
1

Cryptis: Composition and Separation for Tagged Protocols

ARTHUR AZEVEDO DE AMORIM, Boston University, USA
AMAL AHMED, Northeastern University, USA
MARCO GABOARDI, Boston University, USA

Compositionality is recognized as a major challenge for the verification of cryptographic protocols. Modern
verification tools can analyze sophisticated designs in isolation, but provide few guarantees when a protocol
is part of a larger system, interacting with components that were not included in the analysis.

Prior work demonstrated that reasoning about composite protocols is simpler when their messages are
tagged, which prevents them from being misused by other protocols running concurrently in the system.
Unfortunately, tools that support this style of reasoning are confined to special-purpose type systems, and it
is not clear they could be extended to handle more programming features or security properties.

We propose to fill in this gap with Cryptis, a new logic for verifying the correctness of cryptographic
protocols. Cryptis provides first-class support for tagged composition through tag invariants. A tag invariant
is an assertion that guarantees that every message tagged in a certain way satisfies some property. To prove a
protocol correct, a user just needs to specify all the tag invariants that are needed for its proof. If different
protocols use disjoint tags, they can safely execute in parallel, even if they share private keys or other secrets.
In this sense, tag invariants are akin to the point-to assertions of separation logic: if two processes use disjoint
parts of the heap, they can safely run together.

We have implemented Cryptis in Coq with the Iris framework, and used it to verify a variety of case
studies. The case studies demonstrate that Cryptis is well-suited for reasoning about rich protocol features
and guarantees, such as forward secrecy, branching control flow, loops and composition. Moreover, verifying
a composite system can be done modularly, treating each component as a black box.

Additional Key Words and Phrases: keyword1, keyword2, keyword3

1 INTRODUCTION
Two agents, Alice and Bob, would like to communicate a secret 𝑠 over an insecure network. Alice
encrypts 𝑠 using Bob’s public key pk𝐵 and sends it over, while Bob waits to receive a message and
decrypts it using his secret key sk𝐵. This process is depicted as follows:

𝐴 ≜ send(enc(pk𝐵, 𝑠)) 𝐵 ≜ dec(sk𝐵, recv()).

How would we argue that this protocol is secure? To simplify our analysis, let us ignore attacks
that manipulate messages as raw bit strings, or that rely on timing or other covert channels. We’ll
assume that cryptographic operations behave as perfect black boxes—the so-called symbolic model
of cryptography. Then, we can prove security by noting that the system preserves the following
invariants:

(𝐼1) The key sk𝐵 is not known to the attacker.
(𝐼2) The secret 𝑠 is not known to the attacker.

Bob preserves the invariants because it never sends anything to the network. Alice does send
something to the network, but in the symbolic model we assume that the message can only be
decrypted if the attacker knows the secret key sk𝐵, and that it is impossible to extract the key
from an encrypted message. Therefore, this action does not affect the attacker’s knowledge, and 𝑠
remains secret.
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There are many approaches for formalizing this kind of reasoning. In this paper, we’ll focus on
semi-automated tools such as program logics and type systems [25, 14, 15, 8, 9], which require some
manual intervention, but in return provide more modular, scalable analyses than fully automated
tools. One such tool is DY* [15], a state-of-the-art F* library that leverages dependent types and
first-class state invariants [47] to reason about protocols. Using DY*, we can use types to argue that
each action preserves a protocol’s invariants, thus obtaining modular proofs of security that can be
checked efficiently.

Though such type systems and related techniques can substantially simplify invariant reasoning,
they have trouble handling an important feature: composition. Nothing guarantees that an invariant
remains valid if a protocol is part of a larger system, which includes actions that were not accounted
for in the protocol’s security proof. If we are not careful about how we compose a protocol, we
might end up ruining its security guarantees even if it is formally verified. For example, suppose
that Bob is running another program, which acts as a decryption oracle:

𝑂 ≜ send(dec(sk𝐵, recv())).

Alice’s message might be delivered to 𝑂, which would end up leaking 𝑠 and breaking the protocol’s
correctness. This scenario might seem contrived, but it is not that unrealistic. For instance, in some
RSA-based signature schemes, signing a message is implemented using the same operation as
decryption and encryption, and such a vulnerability might arise if sk𝐵 is used for both signing and
decryption.

Of course, composition is not strictly needed for this kind of analysis. The above flaw could
also be detected by patching the definitions and verifying all components together, ensuring that
all the invariants of the system are preserved. But this would be too expensive, both in terms of
human labor and computational resources. To remedy this issue, several works have sought more
compositional methods for protocol verification [25, 18, 5, 6, 31, 22, 32, 3]. Among semi-automated
tools, a particularly relevant proposal is Protocol Composition Logic (PCL) [25]. PCL follows a
composition methodology reminiscent of the Owicki-Gries method [44]: to compose the proof
of correctness for two protocols, we must show that each protocol’s invariants are preserved by
the execution of the other protocol. To illustrate, let us consider how we might attempt to verify
a composite system where 𝐴, 𝐵 and 𝑂 run simultaneously. After verifying 𝐴 and 𝐵, we need to
show that 𝑂 is secure. Since 𝑂 relays any message encrypted for Bob, we need to use the following
property as an invariant:

(𝐼3) Every message encrypted under pk𝐵 can be disclosed to the attacker.

This allows us to show that 𝑂 does not leak any unintended messages. To conclude the proof of
composition, we need to show that 𝑂 preserves the invariants of 𝐴 and 𝐵, and vice versa. The first
step is easy since 𝑂 does not directly leak sk𝐵 or 𝑠. However, we run into trouble when attempting
the next step: 𝐼3 is not invariant under the execution of 𝐴, since it uses pk𝐵 to encrypt 𝑠, which
should not be known do the attacker. Therefore, the composition rule of PCL does not apply, and
we are prevented from running an insecure system.

Assuming that there was a legitimate reason for us to run these protocols in the first place, we
might attempt to patch their definition so that they can be composed securely. A common approach
for preventing this type of issue is to use tagged protocols [22, 6, 5, 40, 19, 20, 3]. A tagged protocol is
one where each type of message carries a particular tag that uniquely identifies it. If each protocol
ignores messages that it is not supposed to use, they will not interfere with each other. For example,
we could modify the previous protocols so that first one uses the tag "p1", while the second one
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uses the tag "p2".

𝐴′ ≜ send(enc(pk𝐵, tag("p1", 𝑠))) 𝐵′ ≜ untag("p1", dec(sk𝐵, recv()))
𝑂′ ≜ send(untag("p2", dec(sk𝐵, recv()))).

The form tag(𝑡, 𝑚) denotes the result of concatenating the tag 𝑡 with the message 𝑚. We assume
that messages are serialized so that it is possible to split such a message into 𝑡 and 𝑚. The form
untag(𝑡, 𝑚′) ensures that 𝑚′ is of the form tag(𝑡, 𝑚) and returns 𝑚; if this is not the case, the
execution halts. With this modification, it is still possible to show that the compound system
comprising 𝐴′ and 𝐵′ is secure with the invariants 𝐼1 and 𝐼2. To verify 𝑂′, we can modify the
invariant 𝐼3 as follows:

(𝐼′
3) Every message encrypted under the tag "p2" can be disclosed to the attacker.

The PCL proofs of 𝐴, 𝐵 and 𝑂 could be adapted to these new versions without much effort.
However, we would still need to apply the logic’s composition rule to argue formally that the
combined system is secure. This is not ideal: like the Owicki-Gries method, verifying a composite
protocol can require a number of additional verification steps that grows quadratically in the total
number of statements of the protocols. Moreover, since we have to inspect the code of all protocols
after verification, we cannot reuse them as black boxes.

Rather than requiring all this extra work, the literature on tagged protocols advocates for a
simpler, more robust approach [22, 5, 6, 40, 20, 19, 3]: just apply some general theorem that
guarantees that protocols with disjoint tags can be composed securely. A simple syntactic check
suffices to discharge many of the expensive invariant checks required in PCL. Unfortunately, this
line of work usually targets a fixed set of properties for programs written in a specialized process
calculus or type system, which limits its applicability. Moreover, many of these approaches are not
implemented, making their guarantees less robust.

Our Proposal: Cryptis. In this paper, we propose to bridge the gap between expressive, mechanized
logics and first-class support for reasoning about tagged protocols. We introduce Cryptis, an
expressive logic for symbolic cryptography that enables protocol composition via tagging. In
Cryptis, each protocol specifies, on a per-tag basis, what invariants its messages must satisfy.
For example, to verify the protocol 𝐴′ shown above, we can formalize its invariants as Cryptis
assertions, guaranteeing that sk𝐵 and 𝑠 are not leaked to the attacker:

𝐼1 ≜ ¬ pterm(sk𝐵) 𝐼2 ≜ ¬ pterm(𝑠).

The predicate pterm(𝑚) states that the term 𝑚 is public and can be sent to the network with no
harm. Cryptis uses public terms as an overapproximation of the attacker knowledge, so the two
predicates above mean that those terms are unknown to the attacker.

To verify 𝐴′, it suffices to show that it is safe to send out 𝑠 to the network after tagging and
encrypting it. Since the attacker might see that message, we need to show that it is public. This is
expressed with the following assertion:

pterm(enc(pk𝐵, tag("p1", 𝑠))).

Proving this assertion boils down to two conditions. First, we need to show that 𝑠 can be made
public if sk𝐵 is public—after all, if the attacker knows sk𝐵, they can simply decrypt that message
and extract 𝑠. This follows directly from 𝐼1, since sk𝐵 is not public.

Second, Cryptis requires each encrypted tagged message to satisfy some user-supplied invariant
associated with that tag. This is expressed with the predicate enc_pred(𝑡, 𝜑), which says that, for
any encryption key 𝑘 and any messagem 𝑚, 𝑚 can be considered public after it is tagged with 𝑡
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and encrypted with 𝑘, provided that 𝜑(𝑘, 𝑚) holds. For this protocol, we do not require any special
properties of encrypted messages, so we can attach a trivial invariant to "p1":

enc_pred("p1", 𝜆𝑘𝑚. true).
This allows us to show that the encrypted term can be made public, which is enough to guarantee
the security of the protocol.

Crucially, imposing this invariant on "p1" has no effect on protocols that use other tags, such
as 𝑂′. To verify this protocol, we formalize the 𝐼′

3 assumption above as tag invariant in Cryptis,
stating that only public terms can be encrypted under "p2":

𝐼′
3 ≜ enc_pred("p2", 𝜆𝑘𝑚. pterm(𝑚)).

This invariant implies that the term output by 𝑂′ is already public, because it was tagged with "p2"
when it was encrypted. Thus, 𝑂′ is safe as well.

Tag invariants allow us to infer which tags a protocol uses simply by looking at its specification.
This guarantees that 𝑂′ is independent of 𝐴′ and 𝐵′, and we can show that they can safely run
together simply by combining their proofs. Moreover, tag invariants are specified separately for
each composed protocol, thus simplifying compositional reasoning.

TheMeaning of Security. The properties encompassed by Cryptis include various flavors of secrecy
and authentication. By “secrecy,” we mean that certain terms cannot be decrypted by the attacker
directly or be output as the result of a call to recv. By “authentication,” we mean that the agents
running the protocol should be capable of agreeing on certain parameters, such as their identities,
a session key to encrypt communication, etc. (This notion hasn’t showed up in our toy example,
but it will play a more important role later on.)

Cryptis makes it possible to view secrecy and authentication through two different angles:
internally and externally. The internal perspective is to state these concepts directly as formulas in
the Cryptis assertion language. Secrecy is the negation of pterm, as we’ve seen in invariants 𝐼1
and 𝐼2, whereas authentication is expressed by a predicate specifying which parameters have been
associated with a session.

The external perspective is to apply the adequacy of the Cryptis logic to relate such internal
statements to properties of the operational semantics of Cryptis programs, which make no reference
to the logic. This can be phrased in terms of security games, a popular criterion for the analysis
of cryptographic protocols. In this work, a security game is simply some glue code involving the
protocol that contains an assertion. By definition, the game is secure if the assertion cannot be
violated, no matter what the attacker does. To state the secrecy of the protocol we’ve seen above,
for instance, we might employ the following game, where ||| denotes parallel execution:

𝐺 ≜ 𝐴′ |||𝐵′ |||𝑂′; assert(recv() ≠ 𝑠).
Security follows from adequacy and from the secrecy assumption on 𝑠, since 𝑠 cannot satisfy
pterm(𝑠) and ¬ pterm(𝑠) simultaneously. As we will see, we can formulate other games to charac-
terize authentication as well.

Of course, protocol verification is only useful if it provides robust security guarantees, which hold
against a large class of possible adversaries—the larger the class, the stronger the guarantees are. As
in related formalisms, the adversary in Cryptis is embodied by the network (i.e., the send and recv
functions), who is assumed to have the power to drop, delay and manipulate messages arbitrarily.
These assumptions are captured in type-like contracts for the network: send takes a public term
as its argument, whereas recv promises to return a public term. To increase the confidence in
its attacker model, Cryptis provides a type system and accompanying library for implementing
these functions: any function of the right type represents a valid attacker strategy. Besides basic
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programming features such as mutable state, the library provides operations for manipulating terms
in the symbolic model, such as encrypting and decrypting messages or computing Diffie-Hellman
exponentials. (The library is merely for convenience: the network types are actually normal Cryptis
specifications, and any manually verified attacker implementation is also covered by a protocol
proof.) Low-level bit operations, covert channels and probabilistic primitives are not included in
the model.

Contributions and Outline. We present Cryptis, a compositional program logic for verifying
cryptographic protocols. Cryptis is mechanized in Coq using Iris [35], an extensible higher-order
concurrent separation logic, with support for ghost state and invariants. We make the following
contributions:

• We introduce the notion of tag invariant, which allows us to impose invariants on tagged
messages exchanged by a protocol. Tag invariants can be specified independently for each
protocol, allowing them to be easily composed. We illustrate the use of tag invariants by
means of the classic Needham-Schroeder-Lowe protocol [43, 39], discussing how we can
obtain game-based security guarantees within the logic and guarantee secure composition
(Section 2).

• We show that Cryptis is expressive enough to prove the soundness of a type system for
writing attacker code. The type system demonstrates that the Cryptis guarantees are robust
against a rich set of attacker behaviors (Section 3).

• We evaluate the expressiveness of Cryptis by using it to verify several case studies. In addition
to the NSL protocol mentioned earlier, we consider a challenge-response authentication
protocol based on digital signatures, Diffie-Hellman key exchange, and a multi-mode key-
exchange scheme based on TLS 1.3. The case studies demonstrate that the logic can model
various cryptographic operations, scale up to protocols with complex features (e.g. branching
control flow), and provide rich guarantees such as forward secrecy, even when multiple
protocols are running in parallel (Section 4).

• We implemented Cryptis in Coq using the Iris logic [35] and mechanized all our case studies
using the Iris proof mode [38] (Section 5).

We discuss related work in Section 6 and conclude in Section 7.

2 CRYPTIS IN A NUTSHELL
To illustrate the basic features of Cryptis, let us see how we can encode a standard example from
the literature: the Needham-Schroeder-Lowe public-key protocol [43, 39], or NSL, for short. The
protocol is used to authenticate two participants, an initiator 𝐼 and a responder 𝑅. We can depict
their interaction as follows:

𝐼 → 𝑅 ∶ {"m1", 𝑛𝐼, pk𝐼}pk𝑅
𝑅 → 𝐼 ∶ {"m2", 𝑛𝐼, 𝑛𝑅, pk𝑅}pk𝐼

𝐼 → 𝑅 ∶ {"m3", 𝑛𝑅}pk𝑅
.

The initiator generates a fresh cryptographic nonce 𝑛𝐼 and sends it to the responder, encrypted
with their public key pk𝑅. The message is tagged with "m1" and includes the initiator’s public key
pk𝐼, which serves as its identity. The responder sends 𝑛𝐼 back to the initiator along with another
fresh nonce 𝑛𝑅. The responder’s key pk𝑅 is included in the response so that the initiator can verify
the responder’s identity (this information was absent in an earlier version of the protocol, which
made it vulnerable to a man-in-the-middle attack [39]). The initiator concludes the handshake
by sending the nonce 𝑛𝑅 back to the responder. In the end, the participants share a fresh secret
(𝑛𝐼, 𝑛𝑅) they can use as a session key.

Tomodel NSL in Cryptis, we use a simple untyped functional language, whose syntax is presented
in Figure 1. Most of the language is standard, and includes features such as tuples, tagged unions,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1:6 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

𝑎 ∈ 𝐴 nonces
𝑙 ∈ 𝐿 locations
𝑐 ∈ string tags

⊕ ∈ {+, −, ×, =, …} operations
𝑉 ∋ 𝑘, 𝑣 ∶= 𝑛 ∈ ℤ ∣ 𝑎 ∈ 𝐴 ∣ 𝑙 ∈ 𝐿 ∣ 𝑏 ∈ 𝔹 ∣ rec 𝑓 𝑥.𝑒 ∣ (𝑣1, 𝑣2) ∣ () values

∣ inl(𝑣) ∣ inr(𝑣) ∣ ek(𝑘) ∣ dk(𝑘) ∣ enc(ek(𝑘), 𝑣) ∣ tag(𝑐, 𝑘) ∣ ⋯
𝐸 ∋ 𝑒 ∶= 𝑥 ∣ 𝑣 ∈ 𝑉 ∣ 𝑒1 ⊕ 𝑒2 ∣ ¬𝑒 ∣ 𝑒1 𝑒2 ∣ !𝑒 ∣ 𝑒1 ← 𝑒2 ∣ new(𝑒) ∣ (𝑒1, 𝑒2) ∣ 𝜋1(𝑒) ∣ 𝜋2(𝑒) expressions

∣ inl(𝑒) ∣ inr(𝑒) ∣ match(𝑒, 𝑒𝑙, 𝑒𝑟) ∣ tag(𝑐, 𝑒) ∣ untag(𝑐, 𝑒)
∣ send(𝑒) ∣ recv() ∣ enc(𝑒1, 𝑒2) ∣ dec(𝑒1, 𝑒2) ∣ mknonce()
∣ ek(𝑒) ∣ dk(𝑒) ∣ is_enc_key(𝑒) ∣ is_dec_key(𝑒) ∣ is_pair(𝑒) ∣ is_int(𝑒) ∣ ⋯

Fig. 1. Syntax (excerpt)

higher-order functions, mutable references, type tests, etc. Its cryptographic core includes operations
for generating cryptographic nonces (mknonce), generating encryption and decryption keys from a
seed (ek and dk), performing asymmetric encryption and decryption (enc and dec), and tagging and
untagging messages. (Later, we’ll extend the syntax with other cryptographic operations, such as
hashing and Diffie-Hellman exponentiation.) For readability, we’ll present examples using a more
concise concrete syntax with complex pattern matching, equality patterns, let binding, operations
on lists, and some other derived forms shown in Figure 2. All of these extensions can be encoded in
the core language. We use the forms tenc and tdec to combine encryption and tagging, since these
features are often used together in Cryptis. We’ll also write the examples as if the language used
fatal exceptions to represent errors, which are in reality managed with the option monad. Errors
are used as the outcome of failing operations such as decrypting a message with the wrong key or
matching a value with an incompatible pattern.

Figure 3 shows the encoding of the NSL protocol in Cryptis. Each function takes as a parameter
the agent’s public and secret keys. The initiator also takes the responder’s public key pk𝑅 as a
parameter, whereas the responder learns the initiator’s key during the protocol. In Cryptis, keys are
values of the form ek(𝑣) or dk(𝑣), which represent encryption or decryption keys generated using
the value 𝑣 as a seed. There are no operations for extracting the seed from a key, but we assume
that it is possible for agents to test whether a value is a key using the is_enc_key and is_dec_key
functions. The code is a more detailed version of the diagram we’ve seen above: there are explicit
operations for tagging, generating nonces (mknonce), decrypting a value (tdec), and communicating
with the network. Note that, as in other protocol models, networking functions do not mention
the sender and the receiver of the messages, since this information could be manipulated by an
attacker.

Programs in Cryptis run with a small-step call-by-value operational semantics. We elide the
complete set of rules, since they are mostly standard. The operational semantics relates configura-
tions, which are triples of the form ({𝑎1, …, 𝑎𝑘}, 𝑚, (𝑒1, …, 𝑒𝑛)). The first component is a set of
nonces, which lists all the nonces 𝑎𝑖 that have been generated during execution. It is only used
to ensure that mknonce returns a fresh value. The second component is a memory, a finite map
from locations to values. The third component is a thread pool, which contains all threads that are
running in the system. To run Cryptis code, we must supply an appropriate definition for the send
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𝜆𝑥.𝑒 ≜ rec _ 𝑥.𝑒 let 𝑥 = 𝑒1 in 𝑒2 ≜ (𝜆𝑥.𝑒1) 𝑒2 𝑒1; 𝑒2 ≜ let _ = 𝑒1 in 𝑒2 some(𝑒) ≜ inr(𝑒)

none ≜ inl() match 𝑒 with inl(𝑥) → 𝑒1; inr(𝑦) → 𝑒2 end ≜ match(𝑒, (𝜆𝑥.𝑒1), (𝜆𝑦.𝑒2))

bind 𝑥 = 𝑒1 in 𝑒2 ≜ match 𝑒1 with inl() → none; inr(𝑥) → 𝑒2 end

tenc(𝑐, 𝑒1, 𝑒2) ≜ enc(𝑒1, tag(𝑐, 𝑒2)) tdec(𝑐, 𝑒1, 𝑒2) ≜ untag(𝑐, dec(𝑒1, 𝑒2))

[𝑒1; …; 𝑒𝑛] ≜ some(𝑒1, …, some(𝑒𝑛, none), …).

Fig. 2. Derived forms

let initiator pkI skI pkR =
let nI = mknonce () in
send (tenc "m1" pkR [nI; pkI]);
let [=nI; nR; =pkR] =
tdec "m2" skI (recv ()) in

send (tenc "m3" pkR nR);
[nI; nR]

let responder pkR skR =
let [nI; pkI] = tdec "m1" skR (recv ()) in
assert (is_enc_key pkI);
let nR = mknonce () in
send (tenc "m2" pkI [nI; nR; pkR]);
assert (recv () == tenc "m3" pkR nR);
[pkI; nI; nR]

Fig. 3. Needham-Schroeder-Lowe protocol

and recv functions, which model the behavior of the attacker. As we’ll see later (Section 3), Cryptis
ships with a comprehensive type system for making it easier to write such functions.

2.1 The Cryptis Assertion Language
The Cryptis assertion language allows us to specify and verify the behavior of cryptographic
protocols such as NSL. The language is a typed 𝜆-calculus, whose syntax is presented in Figure 4,
along with some basic proof rules. (For brevity, we only include propositional terms, of type iProp.
Arguments of function type are indicated with 𝜆 binders.) The language features basic connectives
of higher-order logic and separation logic, as well as the less standard connectives □ and ⇛, which
we’ll explain shortly. The form wp(𝑒, 𝜑) is a weakest precondition assertion, which states that the
expression 𝑒 can safely execute in the current state and, if it terminates, will produce a result 𝑣
such that 𝜑(𝑣) holds. The form 𝜇𝑝.𝜑 denotes a recursive predicate 𝑝; to be well-formed, every
recursive occurrence of 𝑝 in 𝜑 must be guarded by the later modality ▷ [42, 4, 16], which rules out
inconsistent definitions.

Readers who are unfamiliar with the □ and ▷ modalities can mostly ignore them. We just note
that □ is useful for defining a fragment of persistent propositions, which are those that satisfy
the equivalence 𝜑 ⇔ □𝜑. Intuitively, a proposition is persistent when it does not depend on
separation logic resources, such as the points-to predicate 𝑙 ↦ 𝑣. Any proposition of the form
□𝜑 is persistent. For persistent propositions, separating conjunction ∗ is equivalent to its more
conventional counterpart ∧, and, in particular, they can be freely duplicated, as in intuitionistic logic.
Most propositions in Cryptis are persistent, though we’ll encounter some important exceptions
later. For this reason, we’ll often present proof principles in Cryptis using inference-rule notation.
As usual, the antecedents of such rules are implicitly conjoined by ∧.

Before we can verify NSL, let us walk through the main additions of the Cryptis logic. First,
Cryptis features two predicates to describe cryptographic terms, term(𝑣) and pterm(𝑣). The first
one simply states that all the nonces in the value 𝑣 have been allocated at some point during
execution. The second one says that 𝑣 is public, as we’ve discussed in the Introduction. Cryptis
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iProp ∋ 𝜑, 𝜓 ∶= 𝑝 ∣ ⊤ ∣ ⊥ ∣ 𝜑 ∧ 𝜓 ∣ 𝜑 ∨ 𝜓 ∣ 𝜑 ⇒ 𝜓 ∣ ∀𝑥.𝜑 ∣ ∃𝑥.𝜑 ∣ 𝑎 = 𝑏 higher-order logic
∣ 𝜑 ∗ 𝜓 ∣ 𝜑 −∗ 𝜓 ∣ 𝑙 ↦ 𝑣 ∣ □𝜑 ∣ 𝜑 ⇛ 𝜓 ∣ wp(𝑒, 𝜆𝑥.𝜑) separation logic
∣ 𝜇𝑥.𝜑 ∣ ▷ 𝜑 recursion
∣ term(𝑣) ∣ pterm(𝑣) terms
∣ enc_pred(𝑐, 𝜆𝑘𝑣.𝜑) ∣ ⋯ tag invariants

∣ meta(𝑣, 𝑐, 𝑣′) ∣ token(𝑣, 𝐶) ∣ ⋯ nonces

pterm(𝑣) ⇒ term(𝑣) term(𝑣) ⇔ □ term(𝑣) pterm(𝑣) ⇔ □ pterm(𝑣)

enc_pred(𝑠, 𝜑) ⇔ □ enc_pred(𝑠, 𝜑) meta(𝑣, 𝑐, 𝑣′) ⇔ □meta(𝑣, 𝑐, 𝑣′)

token(𝑣, 𝐶) ∧ 𝑐 ∈ 𝐶 ⇛ meta(𝑣, 𝑐, 𝑣′) meta(𝑣, 𝑐, 𝑣1) ∧ meta(𝑣, 𝑐, 𝑣2) ⇒ 𝑣1 = 𝑣2

token(𝑣, 𝐶) ∧ meta(𝑣, 𝑐, 𝑣′) ∧ 𝑐 ∈ 𝐶 ⇒ false token(𝑣, 𝐶1 ⊎ 𝐶2) ∗−∗ token(𝑣, 𝐶1) ∗ token(𝑣, 𝐶2)

Fig. 4. Assertion language and rules (excerpt).

actually defines these predicates in terms of more basic notions, but for simplicity we’ll present
them as if they were primitive.

Each proof in Cryptis is parameterized by a series of tag invariants. A tag invariant describes
under what conditions certain terms satisfy pterm. We focus on tag invariants for encryption, but
the full logic contains invariants for key derivation and message authentication as well. Consider
the following rule for encrypting tagged terms:

EncHon
term(𝑘) term(𝑣) □(pterm(dk(𝑘)) ⇒ pterm(𝑣)) enc_pred(𝑐, 𝜑) ▷ □𝜑(𝑘, 𝑣)

pterm(enc(ek(𝑘), tag(𝑐, 𝑣)))

The first two premises say that the seed 𝑘 and the term 𝑣 must have already been allocated. The
third premise, □(pterm(dk(𝑘)) ⇒ pterm(𝑣)), says that that 𝑣 must be public if dk(𝑘) is also public.
Finally, the last premise says that 𝑘 and 𝑣 must satisfy the tag invariant associated with 𝑐.

Tag invariants can be expressed by arbitrary user-defined predicates; the only restriction is that
we can attach at most one predicate to each tag. In the communication protocols of Section 1, tag
predicates guarantee that certain encrypted terms were already public, so that they could be leaked
to the network safely. As we will see, for NSL, we will require more sophisticated invariants, which
allow the agents to agree on a session key.

In addition to the EncHon rule, which can be used by honest agents, Cryptis provides the
following rule for encryption:

EncPub
pterm(ek(𝑘)) pterm(𝑣)

pterm(enc(ek(𝑘), 𝑣))

This rule says that it is always possible to encrypt a public term with a public encryption key, and
the result of the encryption is always public. Note that this rule does not force the encrypted term
to be tagged; intuitively, the attacker is always allowed to send ill-formed inputs to agents, and it is
the job of the agents to handle these cases correctly.
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Pure
𝑒 →∗

pure 𝑣
{true} 𝑒 {𝑣′.𝑣′ = 𝑣}

Bind
{𝜑} 𝑒 {𝑣.𝜓} ∀𝑣. {𝜓} 𝐾[𝑣] {𝑣′.𝜉}

{𝜑} 𝐾[𝑒] {𝑣′.𝜉}

Recv

{true} recv() {𝑣. pterm(𝑣)}

Send

{pterm(𝑡)} send(𝑡) {𝑣.𝑣 = ()}

Nonce

{true} mknonce() {𝑣. term(𝑣) ∧ □(pterm(𝑣) ⇔ ▷ □𝜑(𝑣)) ∧ token(𝑣, ⊤)}

Fig. 5. Select program logic rules

These two rules are the only way of proving that an encrypted message is public, as shown in
the following inversion principle:

Dec
pterm(enc(ek(𝑘), tag(𝑐, 𝑣))) enc_pred(𝑐, 𝜑)

pterm(ek(𝑘)) ∧ pterm(𝑣)
∨ term(𝑘) ∧ term(𝑣) ∧ □(pterm(dk(𝑘)) ⇒ pterm(𝑣)) ∧ ▷ □𝜑(𝑘, 𝑣)

This rule is reminiscent of the use of union types in protocol verification [8, 9]. If we know that
some encrypted tagged term 𝑣 came from the network, and we know which invariant is associated
to its tag 𝑐, this rule allows us to reason about how this term was encrypted. Intuitively, the first
case of the disjunction tells us that the term might have been encrypted by the attacker, whereas
the second case tells us that the term was encrypted by an honest agent, who ensured that the tag
invariant 𝜑 holds.

To get a sense of how these rules work before we reach a more complex example, let us go back
to the decryption oracle 𝑂′ of Section 1:

𝑂′ ≜ send(tdec("p2", dk(𝑘), recv())).
We’ve argued that, to prove safety, right before calling send, we need to show that pterm(𝑚) holds
while assuming that

pterm(enc(ek(𝑘), tag("p2", 𝑚))) enc_pred("p2", 𝜆𝑘𝑚. pterm(𝑚)).
We apply the Dec rule and have to consider two cases. In the first case, we learn directly that 𝑚 is
public. In the second case, we learn (modulo the modalities) that 𝑚 is public via the tag invariant.

2.2 Program Logic
Figure 5 presents select rules of the Cryptis program logic, stated with Hoare triples of the form
{𝜑} 𝑒 {𝑣.𝜓} ≜ □(𝜑 −∗ wp(𝑒, 𝜆𝑣.𝜓)). Most rules are inherited from conventional concurrent
separation logic, and we focus on the less standard ones. Cryptographic operations usually have no
side effects, and we can analyze their behavior simply by executing them: the premise in the Pure
rule requires that the expression 𝑒 reduces to the value 𝑣 without performing any side effects. The
Bind rule allows us to analyze the behavior of a compound expression 𝐾[𝑒], formed by plugging in
an expression 𝑒 into a call-by-value context 𝐾. The rule says it suffices to replace 𝑒 by some value
𝑣 that satisfies 𝑒’s postcondition.

The only Cryptis-specific forms that have side effects are recv, send and mknonce. The rules
for the network primitives recv and send say that terms coming from the network or sent to the
network are public. The rule for creating a new nonce is more interesting. It says that mknonce()

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1:10 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

𝐼1(𝑘𝑅, 𝑚1) ≜ ∃𝑛𝐼, 𝑘𝐼.𝑚1 = [𝑛𝐼; ek(𝑘𝐼)] ∧ (pterm(𝑛𝐼) ⇔ ▷ corruption(𝑘𝐼, 𝑘𝑅)) ∧ pterm(ek(𝑘𝐼))

𝐼2(𝑘𝐼, 𝑚2) ≜ ∃𝑛𝐼, 𝑛𝑅, 𝑘𝑅.𝑚2 = [𝑛𝐼; 𝑛𝑅; ek(𝑘𝑅)]
∧ (pterm(𝑛𝑅) ⇔ ▷ corruption(𝑘𝐼, 𝑘𝑅)) ∧ meta(𝑘𝑅, "nsl", [𝑘𝐼; 𝑘𝑅; 𝑛𝐼; 𝑛𝑅])

𝐼3(𝑘𝑅, 𝑛𝑅) ≜ ∀𝑛𝐼, 𝑘𝐼.meta(𝑘𝑅, "nsl", [𝑘𝐼; 𝑘𝑅; 𝑛𝐼; 𝑛𝑅]) ⇒ meta(𝑘𝐼, "nsl", [𝑘𝐼; 𝑘𝑅; 𝑛𝐼; 𝑛𝑅]).

Fig. 6. Invariants for NSL

returns some value 𝑣 that is a valid secret term. When the rule is used, we can choose an arbitrary
predicate 𝜑 to determine under what conditions 𝑣 is public. For example, we can choose 𝜑 to be
true to create a public nonce, or choose it to be false. Later (Section 4), we will see that, by varying
the choice of 𝜑, we can also express more interesting declassification conditions.

The last component in the rule for nonce generation is token, which is used to associate nonces
with metadata. We write meta(𝑣, 𝑐, 𝑣′) to say that the metadata value 𝑣′ has been permanently
associated with the nonce 𝑣 under the name 𝑐. This metadata might represent the protocol where 𝑣
is being used, the peer that we’re trying to contact, or something else. The predicate token(𝑣, 𝐶)
means that no metadata has been attached to 𝑣 thus far under any name 𝑐 ∈ 𝐶. In the rule for
nonce generation, 𝐶 is the set ⊤ of all strings, indicating that no metadata has been saved right
after the nonce has been generated. To save a metadata value, as shown in Figure 4, we need to
relinquish ownership of token(𝑣, 𝐶) for 𝑐 ∈ 𝐶. The 𝜑 ⇛ 𝜓 connective that appears in that rule
says that it is possible to obtain 𝜓 by giving up on 𝜑 and performing an update to ghost state. This
ghost state cannot be manipulated by the program directly, and is used to formulate the validity of
Cryptis assertions. Among other things, it is used to record nonce metadata. Note that token(𝑣, 𝐶)
and meta(𝑣, 𝑐, 𝑣′) are inconsistent with each other when 𝑐 ∈ 𝐶, and that only one metadata value
can be associated with a given field at the same time.

2.3 Verifying the NSL Protocol
We now have all the ingredients needed to formulate the correctness theorem for the NSL protocol
and verify it. Intuitively, the protocol provides two guarantees: the exchanged nonces are not public
(secrecy), and the agents agree on their identities and which nonces they exchanged (authentication).

Naturally, these guarantees cannot hold if an attacker controls one of the private keys, either
because it was leaked or because one of the participants was malicious to begin with. It would
be possible to rule out this scenario like we did earlier, by assuming that the private keys are not
public (Section 1). However, this would be too restrictive. Indeed, many protocols are designed to
provide forward secrecy guarantees, which hold even if some keys are compromised by an attacker
after the protocol is completed. We can model such scenarios because Cryptis is an intuitionistic
logic: even if an assertion is not valid at some point in time, it might become valid later during
program execution. Rather than assuming preconditions of the form ¬ pterm(𝑣), which prevent 𝑣
from ever becoming public, we’ll allow the postcondition to detect that a compromise has occurred,
as is often done in analyses of forward secrecy [15, 13]. Note that, while NSL does not provide
forward secrecy by itself, we will see later that such a specification can be used to provide this
guarantee for a protocol that combines NSL with Diffie-Hellman key exchange (Section 4).
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To state the theorem, we use the following abbreviations, where 𝑘𝐼 and 𝑘𝑅 denote the seeds
used to generate the keys of the protocol participants:

corruption(𝑘𝐼, 𝑘𝑅) ≜ pterm(dk(𝑘𝐼)) ∨ pterm(dk(𝑘𝑅))
session(𝑘𝐼, 𝑘𝑅, 𝑛𝐼, 𝑛𝑅) ≜ meta(𝑘𝐼, "nsl", [𝑘𝐼; 𝑘𝑅; 𝑛𝐼; 𝑛𝑅]) ∧ meta(𝑘𝑅, "nsl", [𝑘𝐼; 𝑘𝑅; 𝑛𝐼; 𝑛𝑅])

The first definition expresses that one of the private keys of the agents was compromised during
execution. The second definition says that the agents that have associated the nonces 𝑛𝐼 and 𝑛𝑅 as
metadata with their keys. Intuitively, you can read session(𝑘𝐼, 𝑘𝑅, 𝑛𝐼, 𝑛𝑅) as saying that a session
has been initiated between 𝑘𝐼 and 𝑘𝑅 using 𝑛𝐼 and 𝑛𝑅 as nonces.

Theorem 2.1 (Security of NSL; simplified). Let 𝑘𝐼 and 𝑘𝑅 be such that

pterm(ek(𝑘𝐼)), term(dk(𝑘𝐼)), pterm(ek(𝑘𝑅)), term(dk(𝑘𝑅)),

token(𝑘𝐼, {"nsl"}) ∗ token(𝑘𝑅, {"nsl"}).
Suppose that the invariants enc_pred("m1", 𝐼1), enc_pred("m2", 𝐼2) and enc_pred("m3", 𝐼3) hold,
where each 𝐼 is defined in Figure 6. Then

{true} 𝑃𝐼

⎧{
⎨{⎩

𝑣.
𝑣 = none∨∃𝑛𝐼𝑛𝑅.𝑣 = some([𝑛𝐼; 𝑛𝑅])
∧ pterm(𝑛𝐼) ⇔ pterm(𝑛𝑅) ⇔ ▷ corruption(𝑘𝐼, 𝑘𝑅)
∧(corruption(𝑘𝐼, 𝑘𝑅) ∨ session(𝑛𝐼, 𝑛𝑅, 𝑘𝐼, 𝑘𝑅))

⎫}
⎬}⎭

{true} 𝑃𝑅

⎧
{
⎨
{
⎩

𝑣.

𝑣 = none∨∃𝑛𝐼𝑛𝑅𝑘′
𝐼.𝑣 = some([ek(𝑘′

𝐼); 𝑛𝐼; 𝑛𝑅])
∧ pterm(ek(𝑘′

𝐼))
∧ pterm(𝑛𝐼) ⇔ pterm(𝑛𝑅) ⇔ ▷ corruption(𝑘′

𝐼, 𝑘𝑅)
∧(corruption(𝑘′

𝐼, 𝑘𝑅) ∨ session(𝑛𝐼, 𝑛𝑅, 𝑘′
𝐼, 𝑘𝑅)),

⎫
}
⎬
}
⎭

where

𝑃𝐼 ≜ initiator(ek(𝑘𝐼), dk(𝑘𝐼), ek(𝑘𝑅)) 𝑃𝑅 ≜ responder(ek(𝑘𝑅), dk(𝑘𝑅))

Let us dissect this statement. The premises of the theorem say that the long-term keys of honest
and malicious agents have been allocated, and that the encryption keys are public. We also require
the tag invariants of Figure 6, which we will explain shortly. The first triple in the conclusion
describes the behavior of the initiator. If the initiator terminates successfully with a value 𝑣, two
things can happen. The value might be none, indicating that the handshake failed because one of
the messages contained the wrong nonces or had the wrong format. Otherwise, the initiator returns
a pair of nonces [𝑛𝐼; 𝑛𝑅], which are public if and only if a corruption has occurred. Moreover, if a
corruption did not occur, the protocol guarantees that the two agents agree on the data that was
involved in the handshake. Note that this statement does not allow us to reason about multiple
runs of the protocol: once we associate a key with a given session, there is no way of creating a
new association, because the rules for meta allow at most one metadata value for a given name (cf.
Figure 4). We keep this formulation for simplicity, but our formalization contains a more general
statement that allows us to run the protocol multiple times. (Indeed, we’ll use this more general
statement when analyzing unbounded security games in Section 4.4.) The specification for the
responder is similar, but also involves the key of the initiator returned by the handshake.

To prove the correctness of the initiator, we first split the tokens, since we are only going
to use token(𝑘𝐼, {"nsl"}) (the other half is used in the proof for the responder). We apply the
Nonce rule (Figure 5) to allocate 𝑛𝐼 so that pterm(𝑛𝐼) ⇔ ▷ corruption(𝑘𝐼, 𝑘𝑅). This means that
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let game () =
(* Generate fresh key pairs *)
let (pkI, skI), (pkR, skR) = mkkey (), mkkey () in

(* Reveal the public keys to the attacker *)
send pkI; send pkR;

(* The attacker decides who the initiator should contact *)
let pkR' = recv () in

(* Run the two agents in parallel *)
let ([nI; nR], [pkI'; nI'; nR']) =

initiator pkI skI pkR' ||| responder pkR skR
(* ||| send (tdec "p2" skR (recv ())) *) (* composition *) in

(* Check who won *)
if pkR != pkR' && pkI != pkI' then true else
let m = recv () in
[pkR; pkI; nI; nR] == [pkR'; pkI'; nI'; nR'] && m != [nI; nR]

Fig. 7. Security game for the NSL protocol. The agents win the game if they agree on the handshake parameters
and if the attacker cannot guess the session key.

𝐼1 holds of the initiator’s first message 𝑚1 ≜ [𝑛𝐼; ek(𝑘𝐼)]. Moreover, the rules for pterm imply
that pterm(dk(𝑘𝑅)) ⇒ pterm(𝑛𝐼) ⇒ pterm(𝑚1). Thus, 𝑚1 can be safely encrypted with ek(𝑘𝑅)
under the tag "m1" and sent to the network.

Now, consider what happens when the initiator receives a response 𝑚2. If any checks fail during
execution, the initiator returns none, and the postcondition trivially holds. Otherwise, we reach
the point where it is about to send 𝑛𝑅 back. By Dec, we need to consider two cases to prove that
the message can be safely sent. The first case is that the encrypted contents in 𝑚2 are public. But
this implies that 𝑛𝐼 and 𝑛𝑅 are public, since they are contained in 𝑚2. By the definition of 𝑛𝐼, we
learn that a corruption occurred. Moreover, 𝑛𝑅 can be freely sent over the network by using the
rule EncPub. We conclude by showing that the postcondition follows from the assumptions.

The second case is that the invariant 𝐼2 holds. By definition, this implies that pterm(𝑛𝑅) holds
if and only if ▷ corruption(𝑘𝐼, 𝑘𝑅), and also that meta(𝑘𝑅, "nsl", [𝑘𝐼; 𝑘𝑅; 𝑛𝐼; 𝑛𝑅]) holds. We con-
sume 𝑘𝐼’s token to obtain meta(𝑘𝐼, "nsl", [𝑘𝐼; 𝑘𝑅; 𝑛𝐼; 𝑛𝑅]). The two metadata assertions can be
combined to establish session(𝑘𝐼, 𝑘𝑅, 𝑛𝐼, 𝑛𝑅) and to establish 𝐼3. This, combined with the fact that
pterm(dk(𝑘𝑅)) ⇒ pterm(𝑛𝑅), allows us to send 𝑛𝑅 back and to prove the postcondition, thus
concluding the proof. The reasoning for proving the case for the responder is analogous.

2.4 Adequacy and Game-based Security
The interest of the security statements that we have proven so far is that they inherit the composition
principles of the Cryptis logic, allowing us to reuse them when proving more complex results. But
Cryptis is a non-standard logic, which can make its formulations of secrecy and authentication
hard to interpret. To help bridge this gap, we show Cryptis can be used to derive self-contained
security results that mention only the operational semantics of the Cryptis language, which is
much more conventional.

Let us consider the security game of Figure 7. (For now, ignore the commented line marked with
“composition”; we’ll come back to it in Section 2.5.) The game consists of an initiator and a responder
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running in parallel, using two long-term keys that have been freshly generated (internally, key
generation is defined in terms of nonce generation). The two public keys pkI and pkR are leaked
to the attacker, whereas the corresponding secret keys aren’t. Moreover, the peer contacted by
the initiator is chosen by the network. The attacker wins the game if the test at the end of the
function fails; otherwise, the agents win. The test says that, if one of the contacted peers was an
honest agent, then the participants agree on all the parameters established by the protocol—an
authentication guarantee. Moreover, in this case, the attacker cannot guess the exchanged nonces.

There are many attacks that could be attempted on the game. For instance, Lowe [39] found a man-
in-the-middle attack on the original Needham-Schroeder protocol where the initiator attempts to
contact a malicious agent, and the agent forwards the request to another responder. By manipulating
the messages between the initiator and responder, the attacker manages to learn the exchanged
nonces and to trick the responder into thinking that it was contacted by the initiator. This could
cause the agents to lose the game, either because their nonces appeared in clear text, or because
pk𝐼 ≠ pk′

𝐼. As Lowe found out, the root of the issue was that the second message of the original
protocol did not mention the sender’s identity, so it was not possible for the initiator to determine
who they were talking to. Fortunately, we are going to show that Lowe’s fix is enough to guarantee
security.

The first step is to prove a specification of the form

{𝐼} game() {𝑣.𝑣 = true} ,

where 𝐼 contains all the tag invariants required by the variants of NSL, as stated in Theorem 2.1,
plus some other invariants that we elide here, which are used by mkkey to generate fresh keys.
We prove this result by allocating the key pairs (pk𝐼, sk𝐼) and (pk𝑅, sk𝑅) so that the encryption
keys are public and the decryption keys satisfy □¬ pterm(sk𝐼) and □¬ pterm(sk𝑅). (Formally, this
relies on generating the keys with nonces that cannot become public, and on the invariants used
by mkkey.) These properties mean that we do not allow key compromises in this game, unlike
in Theorem 2.1, where we did not want to rule out this possibility. (We will see how to lift this
restriction in Section 4.)

After allocating and distributing the keys, we analyze the execution of the agents by using the
Par rule of separation logic, which is valid in Cryptis:

Par
{𝜑1} 𝑒1 {𝑣1.𝜓1} {𝜑2} 𝑒2 {𝑣2.𝜓2}

{𝜑1 ∗ 𝜑2} 𝑒1 ||| 𝑒2 {(𝑣1, 𝑣2).𝜓1 ∗ 𝜓2}
.

The Par rule says that we can execute two processes in parallel provided that their pre- and
postconditions use disjoint resources, as expressed by the separating conjunction ∗. In this security
game, these resources are the tokens token(𝑘𝐼, {"nsl"}) and token(𝑘𝑅, {"nsl"}) mentioned in the
proof of Theorem 2.1.

Now, after both agents stop running, we arrive at the test pk𝐼 = pk′
𝐼 ∨pk𝑅 = pk′

𝑅. If the test fails,
the game returns true, and we are done. Otherwise, suppose that pk𝐼 = pk′

𝐼. By the correctness
result for the initiator and the responder, we know that there hasn’t been a key compromise (since
we allocated sk𝐼 and sk𝑅 so that a compromise would be impossible). Therefore, we find that

session(𝑘𝐼, 𝑘′
𝑅, 𝑛𝐼, 𝑛𝑅) session(𝑘𝐼, 𝑘𝑅, 𝑛′

𝐼, 𝑛′
𝑅).

By unfolding these predicates and using the rules of Figure 4, we find that 𝑛𝑅 = 𝑛′
𝑅, 𝑘𝐼 = 𝑘′

𝐼 and
𝑘𝑅 = 𝑘′

𝑅. Moreover, we know that pterm(𝑚) holds (because it originated from the network), we
cannot have 𝑚 = [𝑛𝐼; 𝑛𝑅], since those terms are only public if a compromise has occurred (which,
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as we’ve already argued, is impossible). The other case, pk𝑅 = pk′
𝑅, is similar, and we elide its

proof.
After proving this triple, the second step is to combine it with the adequacy theorem for the

Cryptis logic. Roughly speaking, adequacy allows us to prove a metatheoretic property of the result
of a program 𝑝 if this metatheoretic property is implied by the validity of 𝑝’s postcondition. Since
this postcondition is a simple equality, we conclude that the same equality holds at the meta-level.

Theorem 2.2. For any valid attacker, if game() terminates, it returns true.

Proofs for more complex games would follow the same pattern. For instance, we might add a
phase at the beginning of the game where the attacker is allowed to run some arbitrary (but valid)
setup code (cf. Section 3). The validity of the attacker would imply that that its execution wouldn’t
interfere with the rest of the game, and we would arrive to the same conclusion.

2.5 Compositional Verification
To conclude this tour of Cryptis, let us consider how we can obtain guarantees for composite
protocols. Suppose that we add the decryption oracle from Section 1 as another component running
in parallel to the game of Figure 7:

...
let ([nI; nR], [pkI'; nI'; nR'], _) =
initiator pkI skI pkR' ||| responder pkR skR
||| send (tdec "p2" skR (recv ())) (* composition *)

in
...

To prove security in this scenario, we first prove the following easy specification for 𝑂′, which
follows the informal outline presented in Section 1:

{term(sk𝑅) ∧ enc_pred("p2", 𝜆𝑘𝑚. pterm(𝑚))} 𝑂′ {true} ,
where 𝑂′ ≜ send(tdec("p2", sk𝑅, (recv()))). Then, we can easily adapt the proof of correctness of
Section 2.4 by including this tag invariant in its precondition. Once again, the Par rule guarantees
that the processes run without interference, and that the game is secure.

It might seem that this proof is hardly doing anything. But this is precisely the point: thanks to tag
invariants, the rules of concurrent separation logic are all we need to determine when concurrent
execution is safe in the Cryptis model.

3 MODELING THE ATTACKER
The statement of game security for NSL (Theorem 2.2) underscores that Cryptis can only provide
protection against valid attackers, by which we mean any instantiation of the send and recv
functions that validates the proof rules in Figure 5. Naturally, these guarantees would be useless if
valid attackers were too weak compared to the threats that protocols might encounter in practice.
This section aims to increase our confidence in Cryptis by demonstrating the scope of its attacker
model.

We layer a simple type system for writing attacker code on top of the Cryptis programming
language. The syntax, presented in Figure 8, includes types for public terms, encryption and decryp-
tion keys, products, sums, higher-order functions and references. Thanks to the expressiveness of
Cryptis, it wouldn’t be difficult to extend this system with richer features, such as polymorphism,
recursive types and concurrency. However, we stick to the current formulation for simplicity.

Each type 𝜏 is interpreted as a value predicate ⟦𝜏⟧𝑣. (Note that tag invariants are not used in
this definition, since their sole purpose is to provide guarantees to honest agents.) We lift types to
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Type ∋ 𝜏, 𝜎 ∶= Pub ∣ EK ∣ DK ∣ () ∣ 𝜏 × 𝜎 ∣ 𝜏 + 𝜎|𝜏 → 𝜎 ∣ Ref 𝜏 ∣ List 𝜏 ∣ string ∣ ℤ
𝔹 ≜ () + ()

option 𝜏 ≜ () + 𝜏

⟦−⟧𝑣 ∶ Type → 𝑉 → iProp

⟦−⟧𝑒 ∶ Type → 𝐸 → iProp

⟦Pub⟧𝑣(𝑣) ≜ pterm(𝑣)
⟦EK⟧𝑣(𝑣) ≜ ∃𝑘.𝑣 = ek(𝑘) ∧ pterm(𝑣)
⟦DK⟧𝑣(𝑣) ≜ ∃𝑘.𝑣 = dk(𝑘) ∧ pterm(𝑣)

⟦()⟧𝑣(𝑣) ≜ (𝑣 = ())
⟦𝜏 × 𝜎⟧𝑣(𝑣) ≜ ∃𝑣1, 𝑣2.𝑣 = (𝑣1, 𝑣2) ∧ ⟦𝜏⟧𝑣(𝑣1) ∧ ⟦𝜎⟧𝑣(𝑣2)
⟦𝜏 + 𝜎⟧𝑣(𝑣) ≜ (∃𝑣′, 𝑣 = inl(𝑣′) ∧ ⟦𝜏⟧𝑣(𝑣′)) ∨ (∃𝑣′, 𝑣 = inr(𝑣′) ∧ ⟦𝜎⟧𝑣(𝑣′))

⟦𝜏 → 𝜎⟧𝑣(𝑣) ≜ □(∀𝑣′ ∈ 𝑉 , ⟦𝜏⟧𝑣(𝑣′) ⇒ ⟦𝜎⟧𝑒(𝑣 𝑣′))

⟦Ref 𝜏⟧𝑣(𝑣) ≜ ∃𝑙 ∈ 𝐿.𝑣 = 𝑙 ∧ ∃𝑣′, 𝑙 ↦ 𝑣′ ∧ ⟦𝜏⟧𝑣(𝑣′)
⟦List 𝜏⟧𝑣(𝑣) ≜ ∃𝑣1, …, 𝑣𝑛.𝑣 = [𝑣1; …; 𝑣𝑛] ∧ ⟦𝜏⟧𝑣(𝑣1) ∧ ⋯ ∧ ⟦𝜏⟧𝑣(𝑣𝑛)
⟦string⟧𝑣(𝑣) ≜ ∃𝑠 ∈ string, 𝑣 = 𝑠

⟦ℤ⟧𝑣(𝑣) ≜ ∃𝑛 ∈ ℤ, 𝑣 = 𝑛
⟦𝜏⟧𝑒(𝑒) ≜ wp(𝑒, 𝑣.⟦𝜏⟧𝑣(𝑣))

Γ ⊢ 𝑒 ∶ 𝜏 ≜ □(∀ ⃗𝑣, (∀𝑥 ∈ Γ, ⟦Γ(𝑥)⟧𝑣( ⃗𝑣(𝑥))) ⇒ ⟦𝜏⟧𝑒(𝑒[ ⃗𝑣])).

Fig. 8. Attacker type system

predicates over expressions by using weakest preconditions: ⟦𝜏⟧𝑒 consists of expressions 𝑒 that
evaluate to a value in ⟦𝜏⟧𝑣. Most clauses of the definition are straightforward. The interpretation of
functions uses the □ modality to ensure that the semantics of types is persistent. The ⋯ form in
the interpretation of reference types denotes an invariant, a property that is forced to hold at all
moments during execution. Thus, the clause is simply saying that the contents of the reference
must always be of the appropriate type. By unfolding definitions, we see that providing the send
and recv functions is equivalent to providing a pair of functions of types Pub → () and () → Pub.

The rules of the type system is mostly standard. A judgment Γ ⊢ 𝑒 ∶ 𝜏, defined in Figure 8, means
that the expression 𝑒 produces a result in 𝜏 when plugged in with values of types given in Γ. We
omit most rules, as they are standard, but include the types of primitives for manipulating terms in
Figure 9. Intuitively, these types say that all the term primitives of the Cryptis language can be
restricted to public terms. The functions ek and dk are used to create encryption and decryption
keys from a seed. The functions term_of_ek and term_of_dk behave as the identity, and are used
for coercing keys into terms (alternatively, we could have provided the system with a notion of
subtyping). Going the other direction, there are several functions for coercing cryptographic terms
into other types, such as ek_of_term. These functions are not part of the primitives of Section 2,
but can be easily defined with them. For instance,

ek_of_term ≜ 𝜆𝑥.if is_enc_key(𝑥) then some(𝑥) else none .
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mknonce ∶ () → Pub term_of_list ∶ List(Pub) → Pub

list_of_term ∶ Pub → option(List(Pub)) term_of_int ∶ ℤ → Pub

int_of_term ∶ Pub → optionℤ hash ∶ Pub → Pub

ek ∶ Pub → EK dk ∶ Pub → DK

term_of_ek ∶ EK → Pub term_of_dk ∶ DK → Pub

ek_of_term ∶ Pub → option EK dk_of_term ∶ Pub → optionDK

(=) ∶ Pub → Pub → 𝔹 group ∶ Pub → Pub

(^) ∶ Pub → Pub → Pub enc ∶ EK → Pub → Pub

dec ∶ DK → Pub → Pub tag ∶ string → Pub → Pub

untag ∶ string → Pub → option Pub fork ∶ (() → ()) → ()
mkchan ∶ () → (() → Pub) × (Pub → ()).

Fig. 9. Term manipulation functions

For ease of reference, we also include some operations that were omitted from the syntax in Figure 1.
The function hash denotes a non-invertible, collision-resistant hash function. The function group
takes in a seed as an argument and returns a generator of some Diffie-Hellman group. The operation
^ denotes exponentiation in such a group, which satisfies the equation

group(𝑔) ^ 𝑥 ^ 𝑦 = group(𝑔) ^ 𝑦 ^ 𝑥.

The fork function forks off a new thread. Finally, the function mkchan is used for creating a
communication channel. Its result is a pair of functions for reading terms from the channel and
sending them. This function is not a primitive of the language, but rather implemented using a lock
and a reference to store a bag of sent terms.

To illustrate the type system, consider the code in Figure 10. The code shows an attacker function
that attempts to exploit the decryption oracle discussed in Section 1. The attacker creates two
channels to set up the network and returns them to the agents. In a forked-off thread, it attempts
to forward Alice’s message to the oracle and read the oracle’s leaked message. However, the tags
allow the oracle to detect and prevent the leak. It would also be possible to write more sophisticated
attacks using the language as well, such as Lowe’s attack on the Needham-Schroeder protocol [39].

4 CASE STUDIES
Wehave evaluated the use of Cryptis on four case studies (cf. Figure 11).The case studies demonstrate
that the Cryptis logic is capable of handling various features that are commonly used in real-world
protocols, such as digital signatures, Diffie-Hellman key exchange, branching control flow and
loops. Our model of Diffie-Hellman terms illustrates that the logic can cover rich security properties
such as forward secrecy. Moreover, thanks to its simple composition principles, we can reuse
security proofs to analyze the behavior of multiple protocols running together, something that can
be challenging for automated tools [13, 15, 10]. For example, while ProVerif can take several hours
to check a combined model of TLS 1.2 and 1.3 [15], Cryptis can check the proof of our combined
models running together in about a minute.
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let attacker ()
: (Pub -> () * () -> Pub) =
(* Create channels *)
(* Written by agents, read by attacker *)
let c1 = mkchan () in
(* Read by agents, written by attakcer *)
let c2 = mkchan () in

fork (fun () ->
(* Receive Alice's message *)
let m1 = fst c1 () in
(* Relay message to Bob *)
snd c2 m1;
(* Receive Bob's decrypted message *)
let s = fst c1 () in
snd c2 s);

(snd c1, fst c2)

let game () =
let (send, recv) = attacker () in
let s = mknonce () in
let (pkB, skB) = mkkey () in
let alice () = send (tenc "p1" pkB s) in
let bob () = tdec "p1" skB (recv ()) in
let oracle () =

send (tdec "p2" skB (recv ())) in
(alice () ||| bob () ||| oracle ());
let guess = recv () in
s != guess

Fig. 10. Attacker that tries to exploit the oracle from Section 1

Case study Exercised Features Reference
Challenge/Response Authentication with public signatures Section 4.1

NSL+DH Diffie-Hellman key exchange and forward secrecy Section 4.2
TLS 1.3 Multi-mode authentication; control flow Section 4.3

Combined Composition; loops Section 4.4

Fig. 11. Case studies

4.1 Digital Signatures
As a warm up, we consider how to model digital signatures. Cryptis does not have a dedicated
mechanism for expressing signatures; rather they are simply implemented using asymmetric
cryptography, by swapping which keys are public and secret. The simplest scheme is to use
encryption to sign a message and decryption to verify it (although variations are also possible, such
as signing a hash of the message and sending the signature along with the message in clear text).
This idea is illustrated in the following challenge/response protocol:

𝐼 → 𝑅 ∶ 𝑛𝐼, vk𝐼 𝑅 → 𝐼 ∶ {"cr2", 𝑛𝐼, 𝑛𝑅, vk𝐼}sk𝑅
𝐼 → 𝑅 ∶ {"cr3", 𝑛𝐼, 𝑛𝑅, vk𝑅}sk𝐼

.

The initiator starts out by sending a fresh nonce 𝑛𝐼 in clear text, along their verification key vk𝐼.
The responder then generates a fresh nonce of their own, signs the message, and sends it back to
the initiator. The initiator acknowledges by signing the contents of the message and sending them
back. The control flow is similar to the NSL protocol (Section 2). The main difference with respect
to the earlier setting is in the last message: since the nonces are public, an attacker might forge
the first message to the responder, and the initiator needs to confirm that they meant to initiate a
connection with those parameters.

The Cryptis formalization of this protocol is similar to NSL, except that only the second and third
messages carry invariants, since the first one is sent in clear text. Its specification is also similar to
what we’ve seen earlier, but does not guarantee that the exchanged nonces are secret.
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4.2 Diffie-Hellman Key Exchange and Forward Secrecy
One of the cornerstones of modern communication protocols is Diffie-Hellman key exchange. In its
simplest form, this handshake can be depicted as follows.

𝐼 → 𝑅 ∶ 𝑔𝑎, 𝐼, 𝑅 𝑅 → 𝐼 ∶ 𝑔𝑎, 𝑔𝑏, 𝐼, 𝑅.

In words, the initiator of the protocol generates a fresh nonce and uses it to compute a key share
𝑔𝑎. Here, 𝑔 denotes some generator of a previously agreed upon group, whereas the superscript
denotes exponentiation. The responder replies including another key share of its own. In the end,
the two parties compute the session key 𝑔𝑎𝑏 = (𝑔𝑎)𝑏 = (𝑔𝑏)𝑎.

This handshake is useful because it guarantees, under standard hardness assumptions, that the
session key 𝑔𝑎𝑏 remains secret even if the attacker has access to the transcript of the communication
between the two parties, thus making it harder for attackers to eavesdrop a conversation.

By itself, Diffie-Hellman key exchange does not provide any authenticity guarantees. However,
it can be combined with other primitives to circumvent this limitation. One possibility is to require
each party to sign their messages, using a variant of the protocol of Section 4.1. Another possibility,
which we explore here, is to encapsulate the exchange inside of a handshake based on public-key
encryption such as NSL. This process works as follows:

𝐼 → 𝑅 ∶ {"m1", 𝑔𝑎, pk𝐼}pk𝑅
𝑅 → 𝐼 ∶ {"m2", 𝑔𝑎, 𝑔𝑏, pk𝑅}pk𝐼

𝐼 → 𝑅 ∶ {"m3", 𝑔𝑏}pk𝑅
.

In the original NSL, revealing the long-term secret key of any agent is enough to ruin the
confidentiality guarantees of the protocol, because the attacker can decrypt the exchanged messages
and learn the session key. However, when NSL is combined with Diffie-Hellman key exchange, this
is no longer possible: once the handshake completes, the exchanged messages are not useful to the
attacker. In the literature, this guarantee is often known as forward secrecy. Internally, we can state
forward secrecy by modifying the specification of NSL (Theorem 2.1). We provide here a simplified
statement for the initiator of the protocol that focuses on secrecy, but the result carries over to the
responder and is capable of providing authentication guarantees as well.

Theorem 4.1 (Correctness for NSL+DH; initiator). Using similar notations and assumptions as in
Theorem 2.1, we can show the following specification, where 𝑃DH

𝐼 denotes the code of the initiator of
Diffie-Hellman key exchange running on NSL.

{true} 𝑃 DH
𝐼 {𝑣. 𝑣 = none∨∃𝑛𝐼𝑛𝑅.𝑣 = some(𝑘) ∧ term(𝑘)

∧(corruption(𝑘𝐼, 𝑘𝑅) ∨ □(pterm(𝑘) ⇒ ▷ false)) }

The proof of this theorem is similar to the one of Theorem 2.1. (As a matter of fact, both results
are corollaries of a similar theorem for a more general version of NSL, which is the one we proved in
our Coq formalization.) The main difference is that the message invariants are slightly modified so
that, when the handshake completes without compromise, we can guarantee that each participant
owns key shares of the form 𝑔𝑎 and 𝑔𝑏, where each share has been freshly generated by one agent.
In this case, the term that is returned by 𝑃DH

𝐼 is 𝑔𝑎𝑏 and, to conclude the proof, we just need to
show □(pterm(𝑔𝑎𝑏) ⇒ ▷ false).

To complete this step, let us see more closely how Diffie-Hellman terms are modeled in Cryptis
(Figure 12). Values of the form dh(𝑔, {𝑣1; …; 𝑣𝑛}) represent a Diffie-Hellman power 𝑔𝑣1⋯𝑣𝑛 , with
the exponents 𝑣1, …, 𝑣𝑛 being treated as a multiset, up to permutation. Note that dh is not part of
the syntax of expressions, only of values: to construct a Diffie-Hellman term, programs can use
group(𝑔), which reduces to dh(𝑔, ∅), or they can compute an exponential 𝑣 ^ 𝑣′, which reduces to
dh(𝑔, {𝑣′} ∪ ⃗𝑣) if 𝑣 is of the form dh(𝑔, ⃗𝑣); otherwise, it reduces (arbitrarily) to zero, to signal an
invalid operation. As hinted earlier (Section 3), this means that group(𝑔) ^ 𝑎 ^ 𝑏 and group(𝑔) ^ 𝑏 ^ 𝑎
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⊕ ∈ {…, ^, …}
𝑉 ∋ 𝑣 ≜ ⋯ ∣ dh(𝑣, {𝑣1, …, 𝑣𝑛}) ∣ ⋯
𝐸 ∋ 𝑒 ≜ ⋯ ∣ group(𝑒) ∣ ⋯

iProp ∋ 𝜑 ≜ ⋯ ∣ dh_pred(𝑣, 𝑣′) ∣ ⋯

dh_pred(𝑣, 𝜑) ⇔ □ dh_pred(𝑣, 𝜑)
Nonce

{true} mknonce() {𝑣.⋯ ∧ □∀𝑣′, dh_pred(𝑣, 𝑣′) ⇔ 𝜓(𝑣′)}

DH-Release
pterm(𝑔) ∀𝑖 ∈ {1, …, 𝑛}, dh_pred(𝑣𝑖, dh(𝑔, {𝑣1, …, 𝑣𝑛}))

pterm(dh(𝑔, {𝑣1, …, 𝑣𝑛}))

DH-Group
pterm(𝑔)

pterm(dh(𝑔, ∅))

DH-Exp
pterm(dh(𝑔, {𝑣1, …, 𝑣𝑛})) pterm(𝑣𝑛+1)

pterm(dh(𝑔, {𝑣1, …, 𝑣𝑛, 𝑣𝑛+1}))

Fig. 12. Support for Diffie-Hellman terms in Cryptis

reduce both to the same value dh(𝑔, {𝑎, 𝑏}), guaranteeing that the equational properties of Diffie-
Hellman terms are modeled correctly.

As shown in Figure 12, Cryptis describes which Diffie-Hellman terms can be released by means
of a predicate dh_pred(𝑣, 𝑣′). In the extended Nonce rule, the parameter 𝜓 controls which Diffie-
Hellman terms that mention the nonce 𝑣 can be made public. As shown in the DH-Release rule,
such a term becomes public if it satisfies the predicates of all of its nonces. The DH-Group and
DH-Exp rules say that the basic Diffie-Hellman operations are compatible with public terms, which
allows us to ascribe the types shown in Figure 9. These are the only three rules that can be applied
to show that such terms are secret.

To obtain forward secrecy, we allocate the nonces 𝑎 and 𝑏 in the initiator and the responder so
that, for 𝑛 ∈ {𝑎, 𝑏},

pterm(𝑛) ⇔ ▷ false dh_pred(𝑛, dh(𝑔, ⃗𝑣)) ⇔ ▷(| ⃗𝑣| = 1 ∧ corruption(𝑘𝐼, 𝑘𝑅)).
If we conclude the protocol without corruption, we know that dh(𝑔, {𝑎}) and dh(𝑔, {𝑏}) were
generated by honest agents and were allocated as shown above. We show that pterm(dh(𝑔, {𝑎, 𝑏}))
is absurd by considering all the pterm rules for Diffie-Hellman terms. The rules DH-Release and
DH-Group do not apply, since the term has two exponents. Therefore, the rule DH-Exp must have
been used. But this would imply either pterm(𝑎) and pterm(𝑏), which contradicts how these terms
have been allocated. In sum , dh(𝑔, {𝑎, 𝑏}) cannot be public if the protocol completed successfully.

Alternatively, we could also have expressed forward secrecy externally, as a security game. The
game, shown in Figure 13, is a variant of Figure 7 that reveals the secret keys of the participants
after the handshake is over.

Theorem 4.2. For any valid attacker, if the game of Figure 13 successfully terminates, it returns true.

The proof of this statement is similar to the one of Theorem 2.2, but with a twist: since we are
leaking the keys after the handshake, we cannot allocate them in such a way that prevents them
from ever being made public. Instead, we establish the following equivalences:

pterm(𝑘𝐼) ⇔ pterm(𝑘𝑅) ⇔ ▷meta(𝑘𝐼, "pub", ()),
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let game () =
let (pkI, skI), (pkR, skR) = mkkey (), mkkey () in
send pkI; send pkR;
let pkR' = recv () in
let (gab, [pkI'; gab']) = dh_initiator pkI skI pkR' ||| dh_responder pkR skR in
if pkR != pkR' && pkI != pkI' then true else
send skI; send skR; (* <-- leak secret keys after handshake *)
let m = recv () in
[pkR; pkI; gab] == [pkR'; pkI'; gab'] && m != gab

Fig. 13. Security game for the NSL protocol combined with DH key exchange

where 𝑘𝐼 and 𝑘𝑅 are the seeds used for the participants’ keys. We split 𝑘𝐼’s token to obtain
token(𝑘𝐼, {"nsl"}) and token(𝑘𝐼, {"pub"}). The first one is used to analyze the parallel execution
of the two agents. When the handshake completes, the second one rules out the possibility of
early corruption: the secret keys can only be made public if their seeds are public. And thanks to
how we allocated these terms, corruption is only possible when meta(𝑘𝐼, "pub", ()) holds, which is
impossible because we still own the resource token(𝑘𝐼, {"pub"}). Since no corruption occurred, we
conclude that the secrecy of 𝑔𝑎𝑏 is guaranteed. At this point, we can trade in token(𝑘𝐼, {"pub"}) for
meta(𝑘𝐼, "pub", ()), which has the effect of making the decryption keys sk𝐼 and sk𝑅 public and safe
to be sent over the network. We conclude by invoking the secrecy of 𝑔𝑎𝑏 and the authentication
guarantees of NSL.

4.3 TLS 1.3
Many real-world protocols can be instantiated with a wide range of parameters. For example, when
a client wants to connect to a server using the TLS protocol, they attempt to negotiate with the
server a series of options such as the version of the protocol, which cryptographic algorithms will
be used, etc. This sheer variety of options can be challenging to model, let alone verify, and has
been a source of vulnerabilities in the past. For example, Logjam [2] is a man-in-the-middle attack
where a client is tricked into using a weak Diffie-Hellman group to communicate with a server,
even though both the server and the client support stronger groups. The attacker intercepts the
client’s request and forwards it to the server while downgrading the parameters to use a weak
Diffie-Hellman group instead of a strong one. If the server accepts the connection, its reply does
not contain sufficient information to let the client realize that the weak group is being used, thereby
enabling the attack.

In this case study, we are interested in evaluating how Cryptis scales up to handle such complex
designs, which feature various options and branching control flow. The case study models the
handshake of TLS 1.3, which combines three authentication methods: one that uses on a pre-shared
key, one that uses a Diffie-Hellman key exchange, and one that combines the previous two.The client
chooses the method and sends it in their hello message, along with other connection parameters.
If the server decides to accept the connection, it sends back a signed confirmation to the client
along with other parameters that might be required by the method proposed by the client. The
client finishes the handshake by sending back an acknowledgment to the server authenticated
with the agreed session key. In all these exchanges, server and client ensure that they agree on
the negotiated method and parameters. Besides nonces and key shares, the exchanged parameters
play no major role in our model; we include them simply to demonstrate that the protocol allows
the participants to agree on them. For simplicity, we do not model some of the more complex
aspects of the handshake, such as letting the client send early data along with its hello message,
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or authenticate itself digital signatures, though we believe that the model could be extended to
encompass those features as well.

The correctness statement for our model is similar to the previous ones, but the security guar-
antees depend on the authentication method chosen by the client. From the client’s perspective,
authentication can only fail if both the server’s signing key and the pre-shared key are compromised.
Moreover, if this is not the case, then the established session key satisfies forward secrecy if the
client decided to use a Diffie-Hellman key exchange. The guarantees are almost the same from the
perspective of the server, except that they compromising the pre-shared key is enough to break
them (since the client does not authenticate via digital signatures).

This is by far the most complex of our case studies: the whole development takes about 2k
lines of code. The most challenging part of the proof was correctly manipulating, checking, and
reasoning about the different message formats used in each mode of the handshake, something
that was not needed for the other protocols. We handled this complexity by decomposing the proof
into several auxiliary lemmas, showing that each function in the protocol definition was a faithful
implementation of a higher-level, pure mathematical function defined on structured data types.
This decomposition allowed us to reason about the handshake invariants independently of the
Cryptis program logic, thus simplifying the proof.

4.4 Putting Everything Together
In our last case study, we evaluate compositional reasoning in Cryptis by verifying a system that
combines the previous three protocols. Our goal is to prove the security of the game shown in
Figure 14. The game illustrates the security guarantees of the TLS handshake: we want to show
that the session key produced by the handshake is secure even after running an arbitrary number
of sessions of the protocol, and even after leaking the long term keys of the client and the server
(but not the initial pre-shared key). The environment function spawns off four threads running the
protocols of Sections 4.1 and 4.2 in a loop, and an additional thread that continuously runs the TLS
server of Section 4.3. The tls_client function initiates a series of TLS handshakes with the server.
When the client and the server successfully complete a handshake, they use they established session
key as the pre-shared key for the next request, a behavior that mimics the so-called resumption
feature of TLS. The client stops running when the network tells it to do so. When this happens, it
returns sk, the key of its last session. The agents win the game if the attacker is unable to guess sk.

The proof of this protocol is follows the same strategy as the game-based proofs we’ve seen
earlier, combined with some invariant reasoning to handle the looping threads. We use the proof of
correctness for the TLS client (Section 4.3) to maintain an invariant saying that that the current
session key is secret if we assume that the pre-shared key is also secret. As we’ve argued earlier,
to compromise the TLS handshake, an attacker needs to compromise both the server’s long-term
key and its pre-shared key, which is why the game is secure even after leaking the long-term
key. Reasoning about the other protocols is simple, since the game is not assessing their security
guarantees. All that matters is that they can safely run using tag invariants that are disjoint from
those used by TLS.

5 IMPLEMENTATION
We implemented the Cryptis logic as a library in the Coq proof assistant [49], using the Iris
framework [35]. Iris allows defining expressive concurrent separation logics, with support for
higher-order ghost state, invariants, resource algebras, prophecy variables [36], and more. Cryptis
inherits those features from Iris, and since they are orthogonal to the reasoning patterns supported
by Cryptis, it is possible to compose protocols with other concurrent programs and reason about
their behavior without compromising the soundness of the logic. Though the model of Iris is quite
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let game () =
let (ekI, dkI), (ekR, dkR) = mkkey (), mkkey () in

(* Leak all long-term keys to the attacker *)
send ekI; send dkI; send ekR; send dkR;

(* Generate a pre-shared key *)
let psk = mkpsk () in

(* Run all prior case studies in a loop in a separate thread *)
environment ekI dkI ekR dkR psk;

(* Run some number of client sessions and return the last session key *)
let sk = tls_client psk in
let m = recv () in
m != sk

Fig. 14. Composite case study

complex, most of this complexity is shielded from the user; moreover, thanks to its generic adequacy
theorem, it is possible to relate Iris proofs to results about the plain operational semantics of the
language, as we have seen in Sections 2.4, 4.2 and 4.4. Moreover, Iris comes with an interactive
proof mode [37], which greatly simplifies the verification of programs using the logic.

Rather than formalizing the Cryptis programming language from scratch, we implemented it
as a library in HeapLang, the default programming language in Iris developments. We developed
a small library of HeapLang programs to help manipulating lists and other structured data in
protocol code. The resulting language differs in a few respects compared to our paper presentation.
First, we formalized cryptographic terms as a separate type from HeapLang values, and rely on
an explicit function to encode terms as values. Thanks to this encoding, we can ensure that Diffie-
Hellman terms are normalized so that their intended notion of equality coincides with equality
in the Coq logic, similar to some encodings of quotient types in type theory [23]. Moreover, this
separation simplifies the definition of certain operations on terms that are awkward to express
directly for HeapLang programs. For example, HeapLang does not provide any type tests on values,
whereas our encoding marks each term constructor with a separate integer that can be inspected
by programs, allowing us to perform this kind of test. We implemented nonces as heap locations,
which allowed us to reuse much of the location infrastructure, such as the metadata predicates
of Figure 4. Naturally, this encoding is well-suited for reasoning about protocols in the symbolic
model, but it is not meant to be taken too literally—in particular, real cryptographic protocols need
to send messages over the wire as bit strings, and it is not reasonable to expect that attackers that
have access to the network at that level comply with the representation constraints that we impose.

On paper, Cryptis proofs are parameterized by a set of axioms mapping tags to invariants. To
ensure soundness, we need to ensure that each tag is mapped to exactly one invariant. In our
implementation, we guarantee this property by expressing this mapping in ghost state. Proofs that
use the Iris program logic can simply assume that a certain tag is associated with some invariant as
another hypothesis. To use these proofs in a self-contained result, the user needs to declare a ghost
location that contains this mapping, and initialize the invariants one by one before invoking the Iris
proof. To make this process more modular, we represent tags as Iris namespaces: if a protocol uses
several tags, we can group them in a single namespace 𝒩, so that they can be initialized together
and independently of invariants attached to other tags.
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Component Definitions (loc) Proofs (loc) Time
Core Cryptis 2587 2106 3m10s

Digital Signatures 218 31 35s
NSL+DH 433 328 1m39s
TLS 1.3 839 1137 2m20s

Composite 120 174 58s

Fig. 15. Code statistics

To give an idea of the effort involved in Cryptis, Figure 15 shows the size of our development,
split into lines of code in definitions and proofs. We also include the time spent to compile the
code on Coq 8.12 running on an Ubuntu 20.04 laptop with an Intel i7-1185G7 3.00GHz and 15GiB
of RAM. These statistics show that the proof effort required to use Cryptis is comparable to the
state-of-the-art in semi-automated tools for reasoning about protocols [15].

6 RELATEDWORK
There is an extensive literature on automated and semi-automated techniques for verifying cryp-
tographic protocols; see Barbosa et al. [10] for a recent survey. These techniques can be roughly
classified along three axes: (1) the model of cryptography (symbolic or computational); (2) the
level of automation provided; (3) the verification target (either a model or an efficient, low-level
implementation). This design space presents various trade-offs, and each point has certain strengths
and weaknesses: the symbolic model is easier to reason about than the computational model, but
provides weaker security guarantees; automated tools are easier to use, but can present expressive-
ness and/or performance issues; and a verified model can be secure against certain cryptographic
threats, but still be incorrectly implemented, leading to memory-safety violations or other bugs
that can be exploited by attackers. We briefly survey work in the area, focusing on systems that are
closer to Cryptis; namely, expressive, semi-automated ones that target the symbolic model.

Protocol Logics. One line of work uses logics to reason about protocols. BAN [21] and related
formalisms [28, 48] are early logics that have been applied to various case studies. These are
epistemic logics that describe the belief that each agent has about the state of the system; e.g.
“principal 𝐴 believes that it has established a secure channel with 𝐵.” Despite their intuitive appeal,
one issue with BAN and related systems is that their guarantees were not grounded on a clear
attacker model. This can be seen, for instance, in Lowe’s attack on the original Needham-Schroeder
protocol [43, 39], which could be carried out despite the fact that that protocol had been proven
correct by Burrows, Abadi, and Needham [21]. Moreover, these works did not attempt to attack the
problem of protocol composition.

Some of these issues were partially fixed in Protocol Composition Logic (PCL) [25]. Unlike BAN
and related systems, PCL has a clear connection to a program semantics based on execution traces,
which include events such as “principal 𝐴 has decrypted the message 𝑀” and “the nonce 𝑁 is
fresh.” The logic can reasoning about temporal properties involving these events, allowing one to
formulate precise authentication properties that hold for protocols executing in quite arbitrary
environments. Moreover, PCL was designed to enable proof composition using the Owicki-Gries
method [44]. This works by identifying a set of invariants that each proof relies on, and then
showing that these invariants are preserved by the execution of other components. Unfortunately,
the method can require an additional number of verification steps that grows quadratically on the
size of the components, and makes it impossible to treat components as black boxes (since they
need to be reinspected whenever we compose them). Moreover, subsequent work revealed subtle
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flaws in published PCL proofs [24]. This might be partly a result of the fact that the logic was never
implemented, and all these proofs were carried on paper.

Like PCL, Cryptis is grounded on a precise operational semantics, which allows for more robust
security guarantees compared to the BAN family. Unlike PCL, however, these guarantees are not
connected to an event trace, but simply to the input-output behavior of programs. Moreover, Cryptis
is based on a general purpose programming language and logic, making it possible to reason about
more complex programs that use cryptographic protocols as a component. Thanks to the treatment
of invariants and ghost state in Iris, Cryptis makes it possible to compose protocols proofs with little
effort, avoiding the pitfalls of the Owicki-Gries paradigm. Moreover, Cryptis has been implemented,
increasing our confidence in its guarantees.

Type Systems. Many semi-automated techniques for the symbolic model are based on type
systems. These systems allow reasoning about a variety of protocol properties and features, such as
authentication [29], agent compromise [30], authorization [26], secrecy [1] and zero-knowledge
proofs [7], among others. Type systems lie on a sweet spot between automation and expressiveness:
they allow for better automation than logics like PCL [25] and Cryptis, but require more manual
intervention than more automated checkers such as ProVerif [17] and Tamarin [41]. Like logics,
type systems have the advantage of a more modular analysis, since type annotations can be used
to decompose they verification process into smaller chunks that can be treated independently.
Moreover, type checkers can exploit this decomposition for efficiency. By contrast, checkers often
perform a whole program analysis and cannot benefit from this level of decomposition, often
leading to higher verification times.

A common theme in this line of work is the use of types to distinguish public terms, which can
be sent to and received from the network, from other kinds of terms, which might need to be kept
hidden from the attacker, or that might convey extra invariants when inspected. This distinction is
also found in the pterm and term predicates of Cryptis, although we do not explore the use of a
custom type checking algorithm to verify honest agents: Cryptis relies on manual proofs to check
the code of honest agents, and uses a type system solely for characterizing the capabilities of the
attacker. On the other hand, Cryptis allows us to reason about the interaction of different protocols
running in parallel even when they share encryption keys or other secrets, something that is not
possible in these systems.

More recent work leverages advances in dependent type systems for verifying rich program
properties. The state-of-the-art is DY* [15], a verification library for F*. DY* uses dependent types to
model the global execution trace of a protocol. Like in PCL [25], this global trace determines which
messages are known to the attacker; however, the framework provides a high-level labeling API to
ensure that secret terms are not inadvertently leaked. Cryptis, on the other hand, does not model
the event trace: the set of public terms is taken as the more fundamental notion, and we ensure
that only messages that can be sent and received are those that have been made public beforehand.
Authentication properties can be modularly described in terms of custom ghost state, rather than
the event trace. Since these properties are connected to the execution of the underlying language
via the adequacy of Iris, Cryptis avoids the pitfalls of other approaches [12], where such properties
had to be explicitly stated as axioms that had to be justified separately, relying on the language’s
metatheory.

Like Cryptis and other type-system approaches, DY* requires honest agents to prove that en-
crypted and signedmessages satisfy certain invariants laid out by the protocol.The specific invariant
is determined by the message’s usage—ghost metadata used to verify the protocol. By contrast, in
Cryptis, the invariant is determined by the tag of the encrypted message, which can be inspected
by protocol participants during execution. Moreover, rather than using an encryption predicate
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that is fixed for the verified protocol, Cryptis makes it natural to combine predicates associated to
different keys used by multiple protocols.

Tagged Protocols. Many works have identified tags as a powerful tool for simplifying protocol
composition [22, 6, 5, 40, 19, 20, 3]. In general, it is often possible to guarantee the security of
a composite protocol by checking that its components use disjoint messages [3, 32]; tagging is
simply a cheap discipline to achieve this goal [3]. These earlier works target protocols written in
specialized type systems [40, 20, 20], process calculi [22, 5, 6] or similar formalisms [3], limiting the
range of supported properties to help the analysis. Cryptis extends this line of work to a richer
programming language, and provides a general purpose logic for writing specifications, while
giving up on some automation. The logic is not yet expressive enough to capture some notions of
secrecy that appear in the literature on tagging (e.g. [5]), which cover multiple executions, but we
believe that this limitation can be addressed in the future.

Other Reasoning Techniques. Sumii and Pierce developed logical relations [46] and bisimula-
tions [45] for reasoning about the secrecy and abstraction properties of dynamic sealing, a form
of symmetric encryption for the symbolic model. If we ignore the imperative features of Cryptis,
which are inherited from Iris and somewhat orthogonal to cryptographic reasoning, the two devel-
opments are quite similar. One important difference is that Cryptis imposes invariants on encrypted
messages separately for each tag, making it easy to compose protocols even when they share keys.
Sumii and Pierce also impose invariants on encrypted messages, but in a less structured way that
makes them more difficult to compose: there is no simple way of checking when two arbitrary
invariants used for proving different protocols can be combined soundly. Another difference is
that Cryptis is currently restricted to reasoning about single executions, whereas their work is
relational. On the other hand, the use of Iris allows Cryptis to model temporal properties such as
authentication in a compositional way, an aspect that is not covered by those works.

7 CONCLUSION
We presented Cryptis, a mechanized framework that leverages recent advances in program logics
to reason about composite systems that use cryptographic protocols. Cryptis uses tag invariants to
express the assumptions made by different protocols, guaranteeing that they can be safely composed
as long as they use disjoint message formats. Moreover, protocols can be integrated within more
complex systems, making it possible to reason about the correctness of these systems by reusing
the correctness of the protocols.

FutureWork. Like related tooks [15], Cryptis’ guarantees are currently limited to single executions.
This can be restrictive for security, since many secrecy properties talk about pairs of executions (e.g.
indistinguishability). We plan to lift this restriction in the future, drawing inspiration from Sumii
and Pierce’s work [45, 46], as well as recent work that extends Iris with relational reasoning [27].
Another avenue for strengthening the logic would be to extend it for reasoning about probabilistic
properties and the computational model of cryptography. Recent work shows that probabilistic
reasoning can benefit from separation logic [11], and we believe that these developments could be
naturally incorporated to our setting.

By basing Cryptis on a general-purpose logic, we open the door for investigating the interaction
of cryptographic protocols with other programming disciplines. A particularly intriguing possibility
would be to combine authentication properties with session types, showing that authentication
protocols can be used to safely create sessions in an adversarial setting. Actris [34, 33], a recent
logic that adds support for session types in Iris, would be a natural starting point for this extension.
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