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Abstract
One of the standard correctness criteria for gradual typing is
the dynamic gradual guarantee, which ensures that loosening
type annotations in a program does not affect its behavior in
arbitrary ways. Though natural, prior work has pointed out
that the guarantee does not hold of any gradual type system
for information-flow control. Toro et al.’s GSLRef language,
for example, had to abandon it to validate noninterference.

We show that we can solve this conflict by avoiding a fea-
ture of prior proposals: type-guided classification, or the use
of type ascription to classify data. Gradual languages require
run-time secrecy labels to enforce security dynamically; if
type ascriptionmerely checks these labels withoutmodifying
them (that is, without classifying data), it cannot violate the
dynamic gradual guarantee. We demonstrate this idea with
GLIO, a gradual type system based on the LIO library that
enforces both the gradual guarantee and noninterference,
featuring higher-order functions, general references, coarse-
grained information-flow control, security subtyping and
first-class labels. We give the language a domain-theoretic
semantics, using Pitts’ framework of relational structures to
prove noninterference and the dynamic gradual guarantee.

CCS Concepts: • Security and privacy → Information
flow control; • Software and its engineering→ Seman-
tics.

Keywords: Gradual Typing, Noninterference

1 Introduction
Gradual type systems allow incomplete type annotations for
combining the safety of static typing with the flexibility of
dynamic languages. In the gradual 𝜆-calculus of Siek and
Taha [26], for example, we can declare the argument of a
function 𝑓 as an integer but omit its return type. This causes
the type checker to reject an expression such as 𝑓 (true)while
accepting 𝑓 (0) + 1, understanding that the latter will trig-
ger a run-time error if 𝑓 (0) returns a string. Many language
features have been adapted to gradual typing, including ref-
erences [28], polymorphism [2, 16, 20, 33], among others.

Unlike other approaches that mix static and dynamic typ-
ing, ascribing types in a gradual language should barely
affect a program’s behavior, a property known as the dy-
namic gradual guarantee (DGG) [27]: the program might be
rejected by the type checker or encounter more cast errors,
but its output should not change from 0 to 1. Albeit natural,
this isolation can be challenging for languages that strive

let f x =
let b (* : Bool<S> *) = true in
let y = ref b in
let z = ref b in
if x then y := false else ();
if !y then z := false else ();
!z

f (<S>true)

Figure 1. Prototypical failure of the DGG due to NSU checks.
The program throws an error when run, but successfully
terminates if we uncomment the type annotation Bool<S>.

for more than basic type safety. It had to be abandoned in a
gradual variant of System F to enforce parametricity [33],1
and in the GSLRef language [32] to enforce noninterference.
Sadly, the guarantee does not hold in any existing gradual
language for information-flow control (IFC) [32].

The goal of this paper is to remedy the situation for IFC lan-
guages without giving up on noninterference. The difficulty,
we argue, stems from what we call type-guided classification:
the ability to classify values through static type annotations.
This issue is illustrated in Figure 1, which shows a program in
𝜆info [4], a typical language for dynamic IFC. Values in 𝜆info
carry a confidentiality label that is checked and propagated
during execution to prevent information leaks. Unannotated
values such as true are marked with a default label (in 𝜆info ,
Public), which can be overridden with < >. For example, the
function f is given a Secret argument.

For now, ignore the commented type (* ... *). If we
ran this program in a typical language with no IFC checks, it
would have the effect of leaking the secret input x through
the reference z, returning true when x = true and false
when x = false. Dynamic IFC prevents this breach with
a discipline known as no-sensitive-upgrade (NSU) [4, 5, 30],
which forbids updates to public references when the control
flow is influenced by secrets. In f, the reference y is implicitly
labeled public because it is allocated in a public context and
initialized with a public variable. This causes the NSU check
to fail and terminate execution.

An extension of 𝜆info with gradual types could allow us
to annotate b with the type in comments, declaring it as a
secret boolean. What would this declaration mean? Current
1Recent work has managed to lift this restriction using ideas similar to
ours [20]; cf. Section 7.
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gradual IFC languages (GSLRef [32], ML-GS [11], etc.) inter-
pret it as classification, thus setting b’s dynamic secrecy label
to S. This causes the program to terminate successfully: b’s
label is propagated to y and z, the program accepts the two
assignments (because x has the same secrecy as the refer-
ences), and returns <S>true. Unfortunately, this behavior
violates the DGG, because dynamic errors are not allowed
to disappear when we provide type annotations.

This scenario suggests two possibilities for repairing the
DGG: dropping the NSU discipline in favor of type-guided
classification, or vice versa. The first option is problematic
because it is hard to find other ways of enforcing noninter-
ference. One possibility would be to modify the semantics
of conditionals so that they raise the secrecy of all refer-
ences that could be updated in either branch [24]. In Fig-
ure 1, this would mean raising y’s label above x’s even when
the else branch is taken. Apart from the potential perfor-
mance impact, implementing this solution in any realistic
language would require a rich analysis to compute write
sets, which would likely push us further towards a static
type system. And even if we decided that this was worth it,
keeping type-guided classification would be problematic for
another popular feature of IFC: first-class labels.

Labels are first class if they can be manipulated program-
matically; for instance, we might write labelOf b == S to
test whether b holds a secret. First-class labels are often
adopted in practically minded IFC systems [30, 35] because
they enable rich data-dependent policies. Unfortunately, they
can easily break the DGG with type-guided classification.
Consider Figure 2, for instance: if the DGG were true, the
unannotated program would behave the same way as the
two annotated ones, which is impossible because they re-
turn different results. Similar issues have been observed in
languages with dynamic type tests [8, 27]: if programs can
test anything about a value’s type, they can discern between
different static annotations.

Thus, to reconcile noninterference and gradual typing,
we are led to the second option: abandoning type-guided
classification. The effect of an annotation should be merely
to check labels, not to modify them. For Figure 1, this would
mean that b, y and z would still be dynamically labeled P
despite the static annotation Bool<S>, triggering an NSU
error without any harm to the gradual guarantee. Likewise,
the annotations in Figure 2 could lead to a cast error, but
they would not change the result of the test. Modifying labels
should still be possible, but through a term-level operation
that is not covered by the DGG.

We realize this idea with GLIO, a gradual language based
on the LIO library [31]. LIO exposes an API for securely
manipulating secret data, to which GLIO adds optional an-
notations for preventing security errors statically. Following
the tradition of gradual typing, GLIO features a notion of con-
sistent subtyping to allow annotated and unannotated code
to interoperate automatically, unlike prior work [9], where

let b : Bool<S> = true in labelOf b == S
let b : Bool<P> = true in labelOf b == S
let b = true in labelOf b == S

Figure 2. Failure of the DGG with first-class labels and type-
guided classification. The first two programs have no reason
to fail, and with type-guided classification they terminate
successfully with different results. The DGG would force the
third program must behave the same way as the first two,
which is impossible.

annotations might need to be checked manually. We still
need to investigate if GLIO could be embedded in Haskell
like LIO, but a standalone implementation should pose no
challenges.

An important characteristic of gradual type systems is
how much support they provide for transitioning legacy
programs to richer type disciplines. The literature on gradual
IFC offers different answers to this question; ML-GS [11], for
example, requires references to be given an explicit secrecy
label, and thus does not directly apply to legacy programs,
while GSLRef [32] allows omitting all such annotations. By
extending LIO, GLIO adopts a mixed stance in that regard.
On the one hand, LIO does require programs to provide term-
level annotations for certain operations, including reference
allocation. On the other hand, LIO’s coarse-grained design
obviates the need for tracking labels in most of the program;
most values are protected by the PC label, a state component
used in NSU checks.

In principle, it would be possible to allow missing label
annotations for references in GLIO by choosing a default
value for them, such as the current PC label. Unfortunately,
the benefits of this approach would be limited for gradual
typing: in the presence of first-class labels, no analog of the
DGG can hold when overriding these defaults. We do not
know if the situation fundamentally changes if first-class
labels are absent, but missing reference annotations are not
the only source of violations for the DGG: similar issues arise
in GSLRef even if all reference annotations are present, by
adapting the counterexample of Figure 1 to its syntax.
Our contributions, in sum, are as follows. We introduce

GLIO, a gradual language based on LIO with higher-order
functions and storage, flow-insensitive references, coarse-
grained IFC, security subtyping and public, first-class la-
bels. After an informal tour of the language in Section 2,
we present its syntax and type system in Section 3, and
define its semantics in Section 4. We prove that GLIO satis-
fies both termination- and error-insensitive noninterference
(Section 5) and the gradual guarantee of Siek et al. [27] (Sec-
tion 6). We discuss related work in Section 7 and conclude
in Section 8. Detailed proofs and definitions are included in
Appendix A.
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2 Overview
Before diving into technical details, we give a brief tour
of GLIO. Traditionally, IFC languages have followed a fine-
grained discipline: every value carries a secrecy label, which
is implicitly checked and propagated on every operation (stat-
ically or dynamically). This category includes 𝜆info [4], Flow
Caml [22] and Jif [18], among others. By contrast, systems
such as DCC [1], LIO [31] and GLIO follow a coarse-grained
discipline: only certain values carry labels, and they must
be manipulated using special primitives. The two styles are
equally expressive [23, 34], but coarse-grained systems are
easier to implement (since they track less information) and
offer a smoother migration path to legacy programs (since
most of the code does not need to worry about IFC).

Following LIO, GLIO places labeled values in a special type
called Lab, and uses a monad LIO to express computations
that handle secrets. Its most basic primitives are:
label :: Label -> a -> LIO (Lab a)
unlabel :: Lab a -> LIO a
labLabel :: Lab a -> Label
pcLabel :: LIO Label

The types shown here mimic those of the original LIO,
but we’ll soon see that they can be refined with secrecy
annotations. The label and unlabel functions are used to
wrap a value of type a with a secrecy label and to unwrap
it. To do this safely, the LIO monad encapsulates a state
component known as the PC label, as usual in dynamic IFC.
This label bounds the secrecy of all the values that have been
unlabeled during the computation. Before assignments, the
program performs an NSU check on this label to determine
whether the operation is safe. The functions labLabel and
pcLabel allow inspecting the label of a labeled value and
the current PC label.

The behavior of these primitives is illustrated in Figure 3,
which shows a loose translation of Figure 1 into GLIO. In
addition to the explicitly labeled values, the main difference
with respect to Figure 1 is the new operator, which takes a
secrecy label P as its argument. This translation is contrived
for a coarse-grained system because of the spurious wrap-
ping of the boolean b, but it is operationally closer to the
original example and gives an idea of how GLIO enforces
the DGG.

The program runs the same way as before. Unlabeling b
amounts to a no-op: since its label is public, we do not need
to update the PC label. On the contrary, x is marked as secret,
so unlabeling it has the effect of bumping the PC label to S.
This change is detected by GLIO’s NSU check, which deems
the update to y unsafe and halts the program with an error.

Instead of Lab Bool, we could have given b the more pre-
cise type Lab[S] Bool, which says that the dynamic secrecy
of the wrapped boolean is bounded by S. Since this label is
P, which is below S, the assignment can be performed safely.
Importantly, this does not modify b’s label, and updating y

f :: Lab Bool -> LIO Bool
f x = do

-- Alternative annotation: Lab[S] Bool
b :: Lab Bool <- label P True
b' <- unlabel b
y <- new P b'
z <- new P b'
x' <- unlabel x
if x' then set y False
else return ()

y' <- get y
if y' then set z False
else return ()

get z

do { x <- label S True; f x }

Figure 3. Translation of the example of Figure 1 into GLIO

leads to the same result as before: an error. Since the behav-
ior of the program did not change after refining the type, the
DGG has not been violated.

The annotation did not break the DGG, but it was also
not strong enough to catch the IFC error statically. Figure 4
demonstrates how this could be done in GLIO with a fully
annotated version of the previous program. As in HLIO [9],
the annotations on the LIO monad provide upper bounds on
the PC label at the beginning and at the end of the computa-
tion. The annotations on Ref are stricter than those for Lab:
instead of an upper bound, they give the exact secrecy of the
contents the reference. This is to ensure safety: if the static
label of a reference, S, were above its actual dynamic label,
say P, the NSU check would still throw an error at run time,
which the type checker would not be able to prevent.

To check unlabel, the type system propagates the static
label of its argument into the PC label. Since x could be a
secret, the type system rejects the assignment to y, as it could
lead to an illegal implicit flow.

Figure 5 presents a middle ground between dynamic and
static enforcement, using label introspection to test whether
the NSU check would fail. Unlike labeled values, dynamic
labels are themselves public, and can be inspected without
tainting the PC. The lub operator computes the join, or least
upper bound, of two labels, while canFlowTo checks if one
label is below another. If the test passes, the assignment is
performed without triggering any errors. Otherwise, the pro-
gram logs the unsafe condition so that more robust recovery
code can act later.

Labeling and allocation. Figure 6 further details the role
of labels in values and references. The first program, refLab,
stores the contents of a labeled value x in a fresh reference r.
In this example, the new reference is typed as Ref[S] Bool
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h :: Lab[S] Bool -> LIO[P,S] Bool
h x = do

-- PC label = P
b :: Lab[P] Bool <- label P True
b' :: Bool <- unlabel b
y :: Ref[P] Bool <- new P b'
z :: Ref[P] Bool <- new P b'
x' :: Bool <- unlabel x
-- PC label = S
if x'
-- Assignment is rejected
then set y False
else return ()

y <- get y
if y then set z False
else return ()

get z

do { x <- label S True; g x }

Figure 4. A fully annotated version of Figure 3 that is re-
jected at compile time

maybeUpdate :: Ref Bool -> Lab Bool -> LIO ()
maybeUpdate r x = do

lpc <- pcLabel
let lx = labLabel x
let lr = refLabel r
if lpc `lub` lx `canFlowTo` lr then do
x' <- unlabel x
set r x'

else set errorOccurred True

Figure 5. Error prevention through label introspection

refLab :: Lab[S] Bool -> LIO[P,P] (Ref[S] Bool)
refLab x = do

r :: Ref[S] Bool <- new S true
-- toLab :: Label -> LIO a -> LIO (Lab a)
toLab S (do { x' <- unlabel x; set r x' })
return r

labRef :: Ref Bool -> LIO[P,P] (Lab Bool)
labRef r = toLab (refLabel r) (get r)

eqRef :: Ref Bool -> Ref Bool -> LIO[P,P] Bool
eqRef r1 r2 = return (r1 == r2)

Figure 6. Labeling and dynamic allocation

because the annotation is constant, but in general this ar-
gument can be an arbitrarily complex expression, in which
case the reference would get the imprecise type Ref Bool.

labCast :: LIO (Lab[P] Bool)
labCast = do

b :: Lab[P] Bool <- label P True
return (b :: Lab[S] Bool :: Lab Bool

:: Lab[P] Bool)

labClass :: LIO (Lab[P] Bool)
labClass = do

b :: Lab[P] Bool <- label P True
b' <- unlabel b
b'' <- label S b'
return (b' :: Lab Bool :: Lab[P] Bool)

refCast :: LIO (Ref[S] Bool)
refCast = do

r :: Ref[P] Bool <- new P True
return (r :: Ref Bool :: Ref[S] Bool)

Figure 7. Casts in GLIO

For the allocation to succeed, the reference label must be
above the PC label, which can be statically enforced in this
case thanks to the PC annotations.

The function uses another primitive of GLIO, toLab, to
avoid raising the PC label too much and causing spurious
NSU errors—a problem known in the literature as label creep.
The first argument of toLab is a label l that bounds the
confidentiality of the result,2 and its second argument is a
computation f. If the final PC label after running f is below l,
toLab wraps the result in a value labeled with l and restores
the PC label to its original value; otherwise, it throws an
error. In refLab, the annotations are enough to guarantee
the absence of errors and indicate that the PC label is indeed
restored at the end of execution.

The second program, labRef, goes in the opposite direc-
tion: it uses toLab to wrap the contents of r into a labeled
value of the same secrecy as r.

Fine-grained IFC often makes a distinction between the
label of a reference, which protects its identity, and the label
of its contents. In GLIO, what is sometimes called the “label
of the reference” refers actually to the label of its contents:
the identity of the reference is always public with respect to
the PC label, and does not need to be protected with special
checks. This is illustrated in the third program, eqRef, which
tests if two references are identical. This comparison does
not take their contents into account, which is why the PC
label does not have to be tainted.

Casts and classification. GLIO includes a notion of con-
sistent subtyping to allow annotated and unannotated code
2You may wonder why the first argument of toLab is needed, since we
could have also used the final PC label to wrap the result. The problem is
that labels in GLIO are public, and can be used to leak secrets [15]. By fixing
the final label from the onset, we avoid the issue.
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to interoperate. For example, we may pass a value r of type
Lab Bool to refLab in Figure 6, and the language inserts
the appropriate dynamic checks to ensure safety. (In this
case, the checks are guaranteed to succeed, assuming the
argument’s static label S denotes maximum secrecy.)

We can also trigger casts explicitly using type ascription,
as shown in Figure 7. The first function, labCast, labels the
boolean True with P and sends it through a series of casts,
indicated with the :: operator. The type system checks each
cast to rule out obvious or potential errors, such as coercing
Bool to Unit or Lab[S] Bool to Lab[P] Bool.

Once labCast reaches the last cast to Lab[P] Bool, it suc-
cessfully returns True labeled as P, because the final label on
the boolean stays the same across the casts—in other words,
classification and type casts are decoupled. This contrasts
with previous work [11, 12], in particular with GSLRef [32],
which by design would trigger a run-time error, since it treats
the last cast as a declassification. This behavior can be repli-
cated in GLIO by replacing the first cast to Lab[S] Bool
with another call to label, as shown in the second program,
labClass. Classification succeeds, because S is more secret
than P, but the last cast fails for the same reason.

Finally, refCast demonstrates the difference between la-
bels for Ref and Lab. The annotations on reference types fix
the labels of their contents, so the final cast to Ref[S] Bool
fails during execution even though S is more secret than
P. Note that this cast has to come after a cast to the impre-
cise type Ref Bool: were it omitted, the type checker would
reject the program, as such a coercion always fails.

3 Language
Having built basic intuition, we are ready for a formal defi-
nition. The development assumes a lattice of secrecy labels
𝑙 ∈ 𝐿 ordered by ≼, comprising joins ⋎, meets ⋏, a bottom
element ⊥ and a top element ⊤. The higher a label, the more
confidential the values it classifies, with ⊥ denoting public
data and ⊤ denoting maximum secrecy. A simple choice for
𝐿 would be a lattice of labels {P,S} ordered by P ≼ S. A
more interesting instance is 𝐿 = 𝒫 (𝑃) ordered by the subset
relation, where 𝑃 = {Alice,Bob, …} is a set of principals that
own data, ⊥ = ∅, ⊤ = 𝑃, ⋏ = ∩ and ⋎ = ∪.

Figure 8 summarizes the syntax of terms and types. To
simplify the development, we modify the informal overview
of the previous section in two aspects. First, since our main
technical challenges pertain to impure code, we conflate pure

functions and the LIO monad into a single type 𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆,

which intuitively corresponds to the type 𝑇 → LIO[ ̄𝑙1, ̄𝑙2] 𝑆
seen earlier. Because of cast errors, “pure” code in our lan-
guage still needs to be managed monadically, and this sim-
plification allows us to model pure and impure code with
a single monad (cf. Section 4). Second, to allow for a more
compact semantics later, we present the syntax in A-normal
form [13, 25]: most term formers only allow variables as

arguments, and the earlier snippets should be translated into
a sequence of let definitions. The first term rows contain
usual constructs for manipulating booleans, functions, and
the heap. The last rows are specific to IFC, and correspond
to the primitives of LIO [30]. Two syntactic forms, new and
toLab, take either variables or label constants as arguments
to allow for more precise typing rules, as we’ll soon see. Type
ascription is syntax sugar defined in terms of let, and label
is defined in terms of toLab. (Since we don’t use a separate
monadic type, label and toLab are actually synonyms.)

As usual in gradual languages, the missing annotations
in concrete syntax formally correspond to the gradual label
? ∈ ̄𝐿 ≜ 𝐿 ⊎ {?}, which represents a statically unknown label.
The language does not include product, sum, and recursive
types, but we foresee no difficulties in doing so—for recursive
types in particular, GLIO already includes a higher-order
store, which forces us to handle similar technical challenges.

Figure 9 presents the type system. The label indices in
judgments Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇 correspond to the static annotations
on the LIO monad of Section 2: they constrain the PC label
at the beginning and at the end of the execution of 𝑒. The
rules reflect the behavior of the programs described earlier.
For example, the variable rule does not change the label
annotation because variables are already protected by the
current PC label, and thus require no additional tainting.
A similar reasoning applies to the introspection primitives
refLabel, labLabel and pcLabel.

The rule for let shows how the label indices are threaded
through as the computation unfolds. The consistent subtyp-
ing assumption 𝑇 ′ ≼ 𝑇 allows weakening security annota-
tions or even omitting them entirely. Its definition, shown
in Figure 10, resembles the subtyping discipline of Rajani
and Garg [23], but adapted to the gradual setting using the
Abstracting Gradual Typing (AGT) framework [14]. In AGT,
a gradual type 𝑇 is interpreted as a set 𝛾(𝑇 ) of fully an-
notated types, where each missing annotation is replaced
by all possible completions. For example, 𝛾(Lab?(Bool)) is
{Lab𝑙(Bool) ∣ 𝑙 ∈ 𝐿}. (Figure 20 gives the complete defi-
nition.) This allows us to lift arbitrary predicates on fully
annotated types to gradual types: the inductive presentation
of Figure 10 is equivalent to saying that 𝑇 ≼ 𝑆 holds precisely
when there exist 𝑇 ′ ∈ 𝛾(𝑇 ) and 𝑆′ ∈ 𝛾(𝑆) such that 𝑇 ′ ≼ 𝑆′,
for a suitable subtyping relation ≼ on fully annotated types.
The ≼ relation on ̄𝐿, which extends the one on 𝐿, can be recast
in the same way, by posing 𝛾(?) = 𝐿 and 𝛾(𝑙) = {𝑙}.

On multiple rules, the consistent ordering on gradual la-
bels is used to rule out IFC errors. For example, the side
condition on the set rule subsumes the corresponding NSU
check. Other rules, such as get and if, taint types and the PC
label using partial consistent join operations ⋎ (Figure 11).
The definition uses a consistent meet operation ⋏ and an
intersection operation ∩ on types and gradual labels. These
operations are not joins and meets in the usual sense, since
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𝑙 ∈ 𝐿
̄𝑙 ∈ ̄𝐿 ≜ 𝐿 ⊎ {?}

𝑏 ∈ {0, 1}
𝑐 ∈ 𝐿 ⊎ {𝑥, 𝑦, 𝑧, …}
⊕ ∈ {⋏, ⋎}
Γ ∈ Var ⇀fin Type

𝑒 ∷ 𝑇 ≜ let(𝑒, 𝑥 ∶ 𝑇 .…)
label(𝑐, 𝑥) ≜ toLab(𝑐, 𝑥)

Term ∋ 𝑒 ∶= 𝑥 ∣ let(𝑒1, 𝑥 ∶ 𝑇 .𝑒2) ∣ unit ∣ 𝑏 ∣ if(𝑥, 𝑒1, 𝑒0) ∣ fun(𝑥 ∶ ̄𝑙 𝑇 .𝑒) standard
∣ app(𝑥, 𝑦) ∣ get(𝑥) ∣ set(𝑥, 𝑦) ∣ new(𝑐, 𝑦) ∣ eqRef(𝑥, 𝑦)
∣ refLabel(𝑥) ∣ labLabel(𝑥) ∣ pcLabel() IFC specific
∣ 𝑙 ∣ 𝑥 ⊕ 𝑦 ∣ 𝑥 ≼ 𝑦 ∣ unlabel(𝑥) ∣ toLab(𝑐, 𝑒)

Type ∋ 𝑇 , 𝑆 ∶= Unit ∣ Bool ∣ Label ∣ Ref ̄𝑙(𝑇 ) ∣ Lab ̄𝑙(𝑇 ) ∣ 𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆

Figure 8. Syntax of terms and types

Γ(𝑥) = 𝑇
Γ ⊢ ̄𝑙 , ̄𝑙 𝑥 ∶ 𝑇

Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒1 ∶ 𝑇 ′ Γ[𝑥 ↦ 𝑇] ⊢ ̄𝑙2, ̄𝑙3 𝑒2 ∶ 𝑆 𝑇 ′ ≼ 𝑇

Γ ⊢ ̄𝑙1, ̄𝑙3 let(𝑒1, 𝑥 ∶ 𝑇 .𝑒2) ∶ 𝑆 Γ ⊢ ̄𝑙 , ̄𝑙 unit ∶ Unit Γ ⊢ ̄𝑙 , ̄𝑙 𝑏 ∶ Bool

Γ(𝑥) = Bool Γ ⊢ ̄𝑙1, ̄𝑙12 𝑒1 ∶ 𝑇1 Γ ⊢ ̄𝑙1, ̄𝑙02 𝑒0 ∶ 𝑇0

Γ ⊢ ̄𝑙1, ̄𝑙12⋎ ̄𝑙02 if(𝑥, 𝑒1, 𝑒0) ∶ 𝑇1 ⋎ 𝑇0

Γ(𝑥) = Ref ̄𝑙(𝑇 )
Γ ⊢ ̄𝑙1, ̄𝑙1⋎ ̄𝑙 get(𝑥) ∶ 𝑇

Γ(𝑥) = Ref ̄𝑙(𝑇1) Γ(𝑦) = 𝑇2 𝑇2 ≼ 𝑇1 ̄𝑙1 ≼ ̄𝑙
Γ ⊢ ̄𝑙1, ̄𝑙1 set(𝑥, 𝑦) ∶ Unit

Γ(𝑦) = 𝑇 ̄𝑙2 ≼ 𝑙1
Γ ⊢ ̄𝑙2, ̄𝑙2 new(𝑙1, 𝑦) ∶ Ref𝑙1(𝑇 )

Γ(𝑥) = Label Γ(𝑦) = 𝑇
Γ ⊢ ̄𝑙2, ̄𝑙2 new(𝑥, 𝑦) ∶ Ref?(𝑇 )

Γ(𝑥) = Ref ̄𝑙1(𝑇1) Γ(𝑦) = Ref ̄𝑙2(𝑇2) 𝑇1 ≼ 𝑇2 𝑇2 ≼ 𝑇1

Γ ⊢ ̄𝑙 , ̄𝑙 eqRef(𝑥, 𝑦) ∶ Bool
Γ[𝑥 ↦ 𝑇] ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑆

Γ ⊢ ̄𝑙 , ̄𝑙 fun(𝑥 ∶ ̄𝑙1 𝑇 .𝑒) ∶ 𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆

Γ(𝑓 ) = 𝑇1
̄𝑙2, ̄𝑙3−−−→ 𝑆 Γ(𝑥) = 𝑇2 𝑇2 ≼ 𝑇1 ̄𝑙1 ≼ ̄𝑙2

Γ ⊢ ̄𝑙1, ̄𝑙3 app(𝑓 , 𝑥) ∶ 𝑆
Γ(𝑥) = Ref ̄𝑙(𝑇 )

Γ ⊢ ̄𝑙′, ̄𝑙′ refLabel(𝑥) ∶ Label
Γ(𝑥) = Lab ̄𝑙(𝑇 )

Γ ⊢ ̄𝑙′, ̄𝑙′ labLabel(𝑥) ∶ Label

Γ ⊢ ̄𝑙 , ̄𝑙 pcLabel() ∶ Label Γ ⊢ ̄𝑙 , ̄𝑙 𝑙 ∶ Label
Γ(𝑥) = Γ(𝑦) = Label
Γ ⊢ ̄𝑙 , ̄𝑙 𝑥 ≼ 𝑦 ∶ Bool

Γ(𝑥) = Γ(𝑦) = Label
Γ ⊢ ̄𝑙 , ̄𝑙 𝑥 ⊕ 𝑦 ∶ Label

Γ(𝑥) = Lab ̄𝑙′(𝑇 )
Γ ⊢ ̄𝑙 , ̄𝑙⋎ ̄𝑙′ unlabel(𝑥) ∶ 𝑇

Γ ⊢ ̄𝑙2, ̄𝑙3 𝑒 ∶ 𝑇 ̄𝑙3 ≼ 𝑙1 ⋎ ̄𝑙2
Γ ⊢ ̄𝑙2, ̄𝑙2 toLab(𝑙1, 𝑒) ∶ Lab𝑙1(𝑇 )

Γ(𝑥) = Label Γ ⊢ ̄𝑙2, ̄𝑙3 𝑒 ∶ 𝑇

Γ ⊢ ̄𝑙2, ̄𝑙2 toLab(𝑥, 𝑒) ∶ Lab?(𝑇 )

Figure 9. Typing rules

the consistent orders are not transitive, and thus not actual
orders; nevertheless, we can show

̄𝑙1 ⋏ ̄𝑙2 ≼ ̄𝑙𝑖 ≼ ̄𝑙1 ⋎ ̄𝑙2 and 𝑇1 ⋏ 𝑇2 ≼ 𝑇𝑖 ≼ 𝑇1 ⋎ 𝑇2

for 𝑖 ∈ {1, 2}, whenever the result of these operations is
defined. Note that when all labels are ?, 𝑇 ≼ 𝑆 is equivalent
to 𝑇 = 𝑆, so consistent joins become trivial and the type
system reduces to a simplified version of LIO.

The two variants of new and toLab use different typing
rules because the secrecy of their results is determined by
their label argument. When this label is statically known
(that is, in the new(𝑙, −) and toLab(𝑙, −) variants), the type

system uses it in the result type. When this label is chosen
dynamically, the result type is labeled with ?.

The rule for toLab is slightly more permissive than the
corresponding dynamic checks in LIO [31], which would
translate as ̄𝑙3 ≼ 𝑙1 instead of ̄𝑙3 ≼ 𝑙1 ⋎ ̄𝑙2. Intuitively, our
variant is sound because the result of toLab is protected
by both the ascribed label 𝑙1 and the initial PC label ̄𝑙2. In
Section 4, we will see that toLab takes the PC label into
account during execution too.



Reconciling noninterference and gradual typing

̄𝑙 ≼ ? ? ≼ ̄𝑙
𝑙1 ≼ 𝑙2 ∶ 𝐿
𝑙1 ≼ 𝑙2 ∶ ̄𝐿

𝑇 ∈ {Unit,Bool, Label}
𝑇 ≼ 𝑇

̄𝑙1 ≼ ̄𝑙2 ̄𝑙2 ≼ ̄𝑙1 𝑇1 ≼ 𝑇2 𝑇2 ≼ 𝑇1

Ref ̄𝑙1(𝑇1) ≼ Ref ̄𝑙2(𝑇2)

̄𝑙1 ≼ ̄𝑙2 𝑇1 ≼ 𝑇2

Lab ̄𝑙1(𝑇1) ≼ Lab ̄𝑙2(𝑇2)

̄𝑙′1 ≼ ̄𝑙1 ̄𝑙2 ≼ ̄𝑙′2 𝑇 ′
1 ≼ 𝑇1 𝑇2 ≼ 𝑇 ′

2

𝑇1
̄𝑙1, ̄𝑙2−−−→ 𝑇2 ≼ 𝑇 ′

1
̄𝑙′1, ̄𝑙′2−−−→ 𝑇 ′

2

Figure 10. Consistent subtyping

̄𝑙 ⊕ ? = ? ⊕ ̄𝑙 ≜ ?
̄𝑙 ∩ ? = ? ∩ ̄𝑙 ≜ ̄𝑙

𝑙1 ⊕ 𝑙2 ≜ 𝑙1 ⊕ 𝑙2
̄𝑙 ∩ ̄𝑙 ≜ ̄𝑙

Unit⊕Unit ≜ Unit
Unit ∩Unit ≜ Unit
Bool⊕Bool ≜ Bool
Bool ∩Bool ≜ Bool

Label⊕ Label ≜ Label
Label ∩ Label ≜ Label

Ref ̄𝑙1(𝑇1) ⊕ Ref ̄𝑙2(𝑇2) ≜ Ref ̄𝑙1∩ ̄𝑙2(𝑇1 ∩ 𝑇2)
Ref ̄𝑙1(𝑇1) ∩ Ref ̄𝑙2(𝑇2) ≜ Ref ̄𝑙1∩ ̄𝑙2(𝑇1 ∩ 𝑇2)

Lab ̄𝑙1(𝑇1) ⊕ Lab ̄𝑙2(𝑇2) ≜ Lab ̄𝑙1⊕ ̄𝑙2(𝑇1 ⊕ 𝑇2)
Lab ̄𝑙1(𝑇1) ∩ Lab ̄𝑙2(𝑇2) ≜ Lab ̄𝑙1∩ ̄𝑙2(𝑇1 ∩ 𝑇2)

𝑇1
̄𝑙1, ̄𝑙2−−−→ 𝑇2 ⊕ 𝑇 ′

1
̄𝑙′1, ̄𝑙′2−−−→ 𝑇 ′

2

≜ (𝑇1 ⊝ 𝑇 ′
1 )

̄𝑙1⊝ ̄𝑙′1, ̄𝑙2⊕ ̄𝑙′2−−−−−−−−−→ (𝑇2 ⊕ 𝑇 ′
2 )

(𝑇1
̄𝑙1, ̄𝑙2−−−→ 𝑇2) ∩ (𝑆1

̄𝑙′1, ̄𝑙′2−−−→ 𝑆2)

≜ (𝑇1 ∩ 𝑆1)
̄𝑙1∩ ̄𝑙′1, ̄𝑙2∩ ̄𝑙′2−−−−−−−−−→ (𝑇2 ∩ 𝑆2)

Figure 11.Gradual meets, gradual joins and intersections for
labels and types. Most combinations of types yield undefined
results. Here, ⊕ stands for either ⋎ or ⋏, and ⊝ stands for the
other operation.

⟦Unit⟧ ≅ 1 ⟦Bool⟧ ≅ 2 ⟦Label⟧ ≅ 𝐿

⟦Ref ̄𝑙(𝑇 )⟧ ≅ Ref ̄𝑙 ⟦Lab ̄𝑙(𝑇 )⟧ ≅ Lab ̄𝑙(⟦𝑇⟧)

⟦𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆⟧ ≅ ⟦𝑇⟧

cont
−−−−→ LIO ̄𝑙1, ̄𝑙2 (⟦𝑆⟧)

Ref ̄𝑙 ≜ {(𝑟𝑛, 𝑟stamp, 𝑟label) ∈ ℕ × 𝐿 × 𝛾( ̄𝑙) ∣ 𝑟stamp ≼ 𝑟label}

Lab ̄𝑙(𝑋) ≜ {𝑥@𝑙 ∣ 𝑥 ∈ 𝑋 , 𝑙 ∈ ↓ ̄𝑙}

LIO ̄𝑙1, ̄𝑙2(𝑋) ≜ {𝑓 ∶ Mem ×↓ ̄𝑙1
cont
−−−−→Error(Mem ×𝑋 × ↓ ̄𝑙2)⊥ ∣

∀𝑚1, 𝑙1, 𝑥, 𝑚2, 𝑙2. 𝑓 (𝑚1, 𝑙1) = (𝑚2, 𝑥, 𝑙2) ⇒
𝑙1 ≼ 𝑙2 ∧ valid(𝑙1, 𝑚1, 𝑚2)}

↓ ̄𝑙 ≜ {𝑙′ ∈ 𝐿 ∣ 𝑙′ ≼ ̄𝑙} Error(𝑋) ≜ 𝑋 + {error}

Mem ≜ (𝑇 ∶ Type∘) × Ref? ⇀fin ⟦𝑇⟧

Type∘ ≜ {𝑇 ∈ Type ∣ 𝑇 ∘ = 𝑇 }

𝑇 ∘ ≜
𝑇 with all labels replaced by ? (cf. Figure 21)

valid(𝑙1, 𝑚1, 𝑚2) ≜
∀(𝑇 , 𝑟) ∈ dom(𝑚2).

𝑙1 ≼ 𝑟label ∧ (𝑙1 ⋠ 𝑟stamp ⇒ (𝑇 , 𝑟) ∈ dom(𝑚1))

Figure 12. Interpretation of types and related constructions
on CPOs. To simplify notation, we’ll treat the isomorphisms
defining ⟦𝑇⟧ as equations.

4 Semantics
Each type 𝑇 in GLIO corresponds to a set ⟦𝑇⟧ (Figure 12). As
the heap can store arbitrary values, ⟦𝑇⟧ contains negative
recursive occurrences, which requires some care to handle.
To solve this issue, we define ⟦𝑇⟧ as a CPO rather than
a plain set, by solving a domain equation [29]. We briefly
review basic notions needed to cover the main contributions,
and postpone a detailed description of the construction to
Appendix A for the interested readers.

First, by CPO we mean a partially ordered set where all
increasing chains 𝑥0 ⊑ 𝑥1 ⊑ ⋯ have a least upper bound
⨆𝑖∈ℕ 𝑥𝑖. The notation 𝑋

cont
−−−−→𝑌 refers to the CPO of contin-

uous functions between 𝑋 and 𝑌—that is, monotone func-
tions 𝑓 ∶ 𝑋 → 𝑌 such that 𝑓 (⨆𝑖 𝑥𝑖) = ⨆𝑖 𝑓 (𝑥𝑖), ordered
pointwise. The lifted CPO 𝑋⊥ extends the CPO 𝑋 with a
least element ⊥, which represents nontermination. We use
equality, or the discrete order, on CPOs such as Ref ̄𝑙, Type,
𝐿 and its subsets. Error(𝑋) is ordered pointwise. The order
𝑚1 ⊑ 𝑚2 on Mem holds when dom(𝑚1) = dom(𝑚2) and
∀𝑇 , 𝑟 . 𝑚1(𝑇 , 𝑟) ⊑ 𝑚2(𝑇 , 𝑟).
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⟦Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇⟧ ∶ ⟦Γ⟧
cont
−−−−→ LIO ̄𝑙1, ̄𝑙2(⟦𝑇⟧) ⟦Γ⟧ ≜ ∏

𝑥∈dom(Γ)
⟦Γ(𝑥)⟧

⟦𝑥⟧(𝑠) ≜ return(𝑠(𝑥)) ⟦let(𝑒1 ∶ 𝑇 ′, 𝑥 ∶ 𝑇 .𝑒2)⟧(𝑠) ≜ do {
𝑣′ ← ⟦𝑒1⟧(𝑠);
𝑣 ← ⟦𝑇 ′ ≼ 𝑇⟧(𝑣′);
⟦𝑒2⟧(𝑠[𝑥 ↦ 𝑣])

⟦unit⟧(𝑠) ≜ return(1)

⟦𝑏⟧(𝑠) ≜ return(𝑏) ⟦Γ ⊢ ̄𝑙1, ̄𝑙12⋎ ̄𝑙02 if(𝑥, 𝑒1, 𝑒0) ∶ 𝑇1 ⋎ 𝑇0⟧(𝑠) ≜ do
⎧⎪
⎨⎪
⎩

𝑏 ≜ 𝑠(𝑥)
𝑣 ← ⟦𝑒𝑏⟧(𝑠);
⟦ ̄𝑙𝑏2 ≼ ̄𝑙12 ⋎ ̄𝑙02⟧;
⟦𝑇𝑏 ≼ 𝑇1 ⋎ 𝑇0⟧(𝑣)

⟦get(𝑥 ∶ Ref ̄𝑙(𝑇 ))⟧(𝑠) ≜ do {
𝑣 ← get_,_,𝑇(𝑠(𝑥));
⟦𝑇 ∘ ≼ 𝑇⟧(𝑣) ⟦set(𝑥 ∶ Ref ̄𝑙(𝑇1), 𝑦 ∶ 𝑇2)⟧(𝑠) ≜ do { 𝑣 ← ⟦𝑇2 ≼ 𝑇 ∘

2⟧(𝑠(𝑦));
set_,_,𝑇2(𝑠(𝑥), 𝑣

′)

⟦new(𝑙1, 𝑦 ∶ 𝑇 )⟧(𝑠) ≜ do { 𝑣 ← ⟦𝑇 ≼ 𝑇 ∘⟧(𝑠(𝑦));
new𝑙1,_,𝑇(𝑙1, 𝑣)

⟦new(𝑥, 𝑦 ∶ 𝑇 )⟧(𝑠) ≜ do { 𝑣 ← ⟦𝑇 ≼ 𝑇 ∘⟧(𝑠(𝑦));
new?,_,𝑇(𝑠(𝑥), 𝑣)

⟦eqRef(𝑥, 𝑦)⟧(𝑠) ≜ return(𝑠(𝑥) = 𝑠(𝑦)) ⟦fun(𝑥 ∶ ̄𝑙1 𝑇 .𝑒)⟧(𝑠) ≜ return(𝜆𝑣.⟦𝑒⟧(𝑠[𝑥 ↦ 𝑣]))

⟦Γ ⊢ ̄𝑙1, ̄𝑙3 app(𝑓 ∶ 𝑇1
̄𝑙2, ̄𝑙3−−−→ 𝑆, 𝑥 ∶ 𝑇2) ∶ 𝑆⟧ ≜ do {

𝑣 ← ⟦𝑇2 ≼ 𝑇1⟧(𝑠(𝑥));
⟦ ̄𝑙1 ≼ ̄𝑙2⟧;
𝑠(𝑓 )(𝑣)

⟦refLabel(𝑥)⟧(𝑠) ≜ return(𝑠(𝑥)label)

⟦labLabel(𝑥)⟧(𝑠) ≜ do { _@𝑙 ≜ 𝑠(𝑥);
return(𝑙) ⟦pcLabel()⟧(𝑠)(𝑚, 𝑙) ≜ (∅, 𝑙, 𝑙) ⟦𝑙⟧(𝑠) ≜ return(𝑙)

⟦𝑥 ≼ 𝑦⟧(𝑠) ≜ return(𝑠(𝑥) ≼ 𝑠(𝑦)) ⟦𝑥 ⊕ 𝑦⟧(𝑠) ≜ return(𝑠(𝑥) ⊕ 𝑠(𝑦)) ⟦unlabel(𝑥)⟧(𝑠) ≜ unlabel(𝑠(𝑥))

⟦toLab(𝑙1, 𝑒)⟧(𝑠) ≜ toLab𝑙1,_,_,_(𝑙1, ⟦𝑒⟧(𝑠)) ⟦toLab(𝑥, 𝑒)⟧(𝑠) ≜ toLab?,_,_,_(𝑠(𝑥), ⟦𝑒⟧(𝑠))

Figure 13. Semantics of typing derivations. The types of some variables and expressions are included for clarity, even though
they do not appear in the syntax of terms. Conversely, some of the indices of get, set, new and toLab have been left out, but
they can be inferred from the annotations in the corresponding judgments.

Let us explain these definitions before moving on to the
semantics of terms. The CPOs Lab ̄𝑙(𝑋) contain elements of 𝑋
protected by a dynamic label 𝑙; as explained in Section 2, this
label is bounded by the annotation ̄𝑙, not necessarily equal to
it. A reference 𝑟 = (𝑟𝑛, 𝑟stamp, 𝑟label) carries two labels: 𝑟stamp
corresponds to the PC label at the moment of allocation, and
𝑟label corresponds to the secrecy of its contents. As noted
in Section 2, 𝑟label must exactly match the static annotation
on the reference’s type, if one is provided. The stamp is not
important for program behavior, but it simplifies the proof
of noninterference, for reasons that will soon become clear.

We depart from Haskell by following call-by-value rather
than call-by-need: functions take forced values as their ar-
guments, rather than elements of a lifted CPO 𝑋⊥. This is
merely for organizational purposes: call-by-value allows us
to segregate divergence as an effect inside LIO, rather than
including it explicitly in the denotation of each type.

The CPO LIO ̄𝑙1, ̄𝑙2(𝑋) corresponds to the computation types
of LIO [30] and HLIO [9]. Its elements are functions that take
as inputs a memory (Mem) and a PC label (↓ ̄𝑙1), and that can
either run forever (⊥), produce an error, or return memory
updates (Mem), a result (𝑋), and a new PC label (↓ ̄𝑙2). (Re-
turning updates instead of the final memory is unorthodox,
but it simplifies the domain equations, as discussed in Ap-
pendix A.2.) The post-condition on the PC label means that it
goes up to track inspected secrets. The post-condition valid,
explained next, ensures that memory updates do not leak
secrets.

A memory 𝑚 ∈ Mem is a function with finite domain
that maps a type 𝑇 and a reference 𝑟 to a value 𝑣 ∈ ⟦𝑇⟧.
We assume that 𝑇 has no label annotations, because our
semantics doesn’t track this information for stored values
(we discuss a more efficient approach below). The predi-
cate valid(𝑙1, 𝑚1, 𝑚2) describes which memory updates are
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unlabel ̄𝑙1, ̄𝑙2,𝑋 ∶ Lab ̄𝑙2(𝑋) → LIO ̄𝑙1, ̄𝑙1⋎ ̄𝑙2(𝑋)
unlabel ̄𝑙1, ̄𝑙2,𝑋(𝑥@𝑙2)(𝑚, 𝑙1) ≜ (∅, 𝑥, 𝑙1 ⋎ 𝑙2)

get ̄𝑙1, ̄𝑙2,𝑇
∶ Ref ̄𝑙2 → LIO ̄𝑙1, ̄𝑙1⋎ ̄𝑙2(⟦𝑇

∘⟧)

get ̄𝑙1, ̄𝑙2,𝑇
(𝑟)(𝑚, 𝑙1) ≜ {

(∅, 𝑣, 𝑙1 ⋎ 𝑟label) if 𝑚(𝑇 ∘, 𝑟) = 𝑣
error if (𝑇 ∘, 𝑟) ∉ dom(𝑚)

set ̄𝑙1, ̄𝑙2,𝑇 ∶ Ref ̄𝑙1 ×⟦𝑇
∘⟧ → LIO ̄𝑙2, ̄𝑙2(1)

set ̄𝑙1, ̄𝑙2,𝑇(𝑟 , 𝑣)(𝑚, 𝑙2) ≜ {
([𝑇 ∘, 𝑟 ↦ 𝑣], 1, 𝑙2) if 𝑙2 ≼ 𝑟label and (𝑇 ∘, 𝑟) ∈ dom(𝑚)
error otherwise

new ̄𝑙1, ̄𝑙2,𝑇 ∶ 𝛾( ̄𝑙1) × ⟦𝑇 ∘⟧ → LIO ̄𝑙2, ̄𝑙2(Ref ̄𝑙1)

new ̄𝑙1, ̄𝑙2,𝑇(𝑙1, 𝑣)(𝑚, 𝑙2) ≜
⎧⎪
⎨⎪
⎩

([𝑟 ↦ 𝑣], 𝑟 , 𝑙2) if 𝑙2 ≼ 𝑙1 and 𝑟 = (𝑇 ∘, (𝑛, 𝑙2, 𝑙1)), with
𝑛 ≜ min{𝑛 ∣ (𝑇 ∘, (𝑛, 𝑙2, 𝑙1)) ∉ dom(𝑚)}

error otherwise

toLab ̄𝑙1, ̄𝑙2, ̄𝑙3,𝑋 ∶ 𝛾( ̄𝑙1) × LIO ̄𝑙2, ̄𝑙3(𝑋) → LIO ̄𝑙2, ̄𝑙2(Lab ̄𝑙1(𝑋))

toLab ̄𝑙1, ̄𝑙2, ̄𝑙3,𝑋(𝑙1, 𝑓 )(𝑚, 𝑙2) ≜

⎧
⎪⎪

⎨
⎪⎪
⎩

(𝑚′, 𝑣@𝑙1, 𝑙2) if 𝑓 (𝑚, 𝑙2) = (𝑚′, 𝑣, 𝑙3) and 𝑙3 ≼ 𝑙1 ⋎ 𝑙2

error if 𝑓 (𝑚, 𝑙2) = (𝑚′, 𝑣, 𝑙3) and 𝑙3 ⋠ 𝑙1 ⋎ 𝑙2
or 𝑓 (𝑚, 𝑙2) = error

⊥ if 𝑓 (𝑚, 𝑙2) = ⊥

Figure 14. Semantics of typing derivations (continued)

return ̄𝑙 ,𝑋 ∶ 𝑋
cont
−−−−→ LIO ̄𝑙 , ̄𝑙(𝑋)

return(𝑥)(𝑚, 𝑙) ≜ (∅, 𝑥, 𝑙)

bind ̄𝑙1, ̄𝑙2, ̄𝑙3,𝑋 ,𝑌 ∶ LIO ̄𝑙1, ̄𝑙2(𝑋) × (𝑋
cont
−−−−→ LIO ̄𝑙2, ̄𝑙3(𝑌 ))

cont
−−−−→ LIO ̄𝑙1, ̄𝑙3(𝑌 )

bind(𝑘, 𝑓 )(𝑚, 𝑙) ≜

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(𝑚′ ⊎⃗ 𝑚″, 𝑦, 𝑙″) if 𝑘(𝑚, 𝑙) = (𝑚′, 𝑥, 𝑙′) and
𝑓 (𝑥)(𝑚 ⊎⃗ 𝑚′, 𝑙′) = (𝑚″, 𝑦, 𝑙″)

error if 𝑘(𝑚, 𝑙) = (𝑚′, 𝑥, 𝑙′) and
𝑓 (𝑥)(𝑚 ⊎⃗ 𝑚′, 𝑙′) = error or 𝑘(𝑚, 𝑙) = error

⊥ otherwise

(𝑚 ⊎⃗ 𝑚′)(𝑟) ≜ {
𝑚′(𝑟) if 𝑟 ∈ dom(𝑚′)
𝑚(𝑟) otherwise

Figure 15. Monadic operations of LIO

allowed under the PC label 𝑙1: new and updated locations
must pass the NSU check for 𝑙1 (𝑙1 ≼ 𝑟label), and stamps must
reflect their allocation context, which, as hinted earlier, is a
technical device to simplify the noninterference proof.

The definition of LIO does not preclude computations that
access undefined locations in memory, because its elements
take all possible memories as their input. It would be possible
to rule out these errors with a Kripke semantics in the style of

Levy [17], but the issue is orthogonal to our purposes, and we
stick to the current formulation for simplicity. Note, however,
that some memory-related errors are ruled out by the shape
of the memory. For instance, if we try to read 𝑚(Bool, 𝑟) and
that location is defined, we know that it contains indeed a
boolean, which we can access directly.

With the interpretation of types at hand, we are ready for
the semantics of typed terms, shown in Figures 13 and 14. We
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⟦𝑇 ≼ 𝑆⟧ ̄𝑙 ∶ ⟦𝑇⟧
cont
−−−−→ LIO ̄𝑙 , ̄𝑙(⟦𝑆⟧) (for 𝑇 ≼ 𝑆)

⟦𝑇 ≼ 𝑇⟧ ≜ return (for 𝑇 ∈ {Unit,Bool, Label})

⟦Ref ̄𝑙1(𝑇 ) ≼ Ref ̄𝑙2(𝑆)⟧(𝑛, 𝑙1, 𝑙2) ≜ {
return(𝑛, 𝑙1, 𝑙2) if 𝑙2 ∈ 𝛾( ̄𝑙2)
𝜆(−). error otherwise

⟦Lab ̄𝑙1(𝑇1) ≼ Lab ̄𝑙2(𝑇2)⟧(𝑣@𝑙) ≜
⎧

⎨
⎩

do {
𝑣′ ← ⟦𝑇1 ≼ 𝑇2⟧(𝑣);
return(𝑣′@𝑙)

if 𝑙 ∈ ↓ ̄𝑙2

𝜆(−). error otherwise

⟦𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆 ≼ 𝑇 ′

̄𝑙′1, ̄𝑙′2−−−→ 𝑆′⟧(𝑓 ) ≜ return 𝜆𝑥′.do

⎧
⎪

⎨
⎪
⎩

𝑥 ← ⟦𝑇 ′ ≼ 𝑇⟧(𝑥′);
⟦ ̄𝑙′1 ≼ ̄𝑙1⟧;
𝑦 ← 𝑓 (𝑥);
⟦ ̄𝑙2 ≼ ̄𝑙′2⟧;
⟦𝑆 ≼ 𝑆′⟧(𝑦);

⟦ ̄𝑙1 ≼ ̄𝑙2⟧ ∶ LIO ̄𝑙1, ̄𝑙2(1) (for ̄𝑙1 ≼ ̄𝑙2)

⟦ ̄𝑙1 ≼ ̄𝑙2⟧(𝑚, 𝑙1) ≜ {
(∅, 1, 𝑙1) if 𝑙1 ∈ ↓ ̄𝑙2
error otherwise

Figure 16. Label and type coercion

equip LIO with the structure of a parameterized monad [3]
(Figure 15), which we use to interpret the Haskell-like do
notation in the definitions. Notice how bind applies updates
to the initial memory before invoking its continuation, in
accordance with our treatment of state. Figure 16 defines the
interpretation of subtyping coercions. As explained earlier,
coercing a value into Lab or Ref types never changes its
label, only checks it, which will be important for the gradual
guarantee. Similarly, the coercions triggered by casting or
applying a function never modify the PC label.

The behavior of basic ML operations is standard, except
for coercions and the NSU checks in set and new. To read a
reference, we cast its contents to ensure that the labels on the
type are respected; conversely, when updating it reference,
we use a cast to forget the labels. (Note that 𝑇 ≼ 𝑇 ∘ and 𝑇 ∘ ≼
𝑇 hold for every 𝑇.) A more efficient approach would be to
usemonotonic references [28], whose types are guaranteed to
be bounded in precision by the type of their contents during
execution. This property ensures that accesses to a reference
of fully annotated type can be performed directly, without
any casts. We believe that monotonic references could be
incorporated in GLIO without compromising our results, but
arguing about their correctness requires an intricate stateful
invariant, and we keep our scheme for simplicity. Note that
in the case of base types, the casts reduce to the identity,
because they have no labels to be checked.

The IFC operations are modeled after their analogues in
LIO [30], but toLab includes the initial PC label 𝑙2 in its side
condition, as anticipated by its typing rule. Note how unlabel
and get taint the PC label to track the secrecy of the result.

The examples of Section 2 have already exercised the most
interesting aspects of the semantics, except for one: stamps.
Consider the following program 𝑒, written in informal syntax
for clarity (recall that S stands for ⊤).

toLab S $ do
b' <- unlabel b
if b' then do { new S True; return () }
else return () }

new S True

We can produce a typing judgment [𝑏 ↦ Lab?(Bool)] ⊢⊥,⊥
𝑒 ∶ Ref⊤(Bool), which corresponds to a function ⟦𝑒⟧ of type
Lab?(2)

cont
−−−−→ LIO⊥,⊥(Ref⊤). By running this program on two

different inputs and an empty memory, we obtain successful
executions

⟦𝑒⟧(1@⊤)(∅, ⊥) = ([𝑟0 ↦ 1, 𝑟1 ↦ 1], 𝑟1, ⊥)
⟦𝑒⟧(0@⊤)(∅, ⊥) = ([𝑟1 ↦ 1], 𝑟1, ⊥),

where 𝑟0 = (Bool, (0, ⊤, ⊤)) is allocated inside the conditional,
and 𝑟1 = (Bool, (0, ⊥, ⊤)) is allocated at the end.

Although the secret 𝑏 caused 𝑒 to perform different alloca-
tions, the result is the same: the stamps allow us to perform
the allocations in high-secrecy contexts without impacting
references allocated in low-secrecy contexts. This technique,
due to Azevedo de Amorim et al. [5], simplifies the proof of
noninterference because we can match references in related
executions up to equality. Without stamps, noninterference
would still hold, but the values returned in each execution
would not necessarily be equal, requiring a more complex
argument to relate syntactically different references [7].
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CPO Relation Definition
1, 2, 𝐿,Ref ̄𝑙 𝑥 ≈𝑙 𝑦 𝑥 = 𝑦
Lab ̄𝑙(𝑋) 𝑥1@𝑙1 ≋𝑙 𝑥2@𝑙2 ∀𝑖 ∈ {1, 2}. 𝑙𝑖 ≼ 𝑙 ⇒ (𝑥1 ≈𝑙 𝑥2 ∧ 𝑙1 = 𝑙2)

𝑥1@𝑙1 ≈𝑙 𝑥2@𝑙2 𝑥1@𝑙1 ≋𝑙 𝑥2@𝑙2 ∧ 𝑙1 = 𝑙2
𝑋

cont
−−−−→𝑌 𝑓 ≈𝑙 𝑔 ∀𝑥 ≈𝑙 𝑦, 𝑓 (𝑥) ≈𝑙 𝑔(𝑦)

LIO ̄𝑙1, ̄𝑙2(𝑋) 𝑓 ≈𝑙 𝑔 ∀𝑚1 ≈𝑙 𝑚2, 𝑙′, 𝑚′
1, 𝑚′

2, 𝑥1, 𝑥2, 𝑙1, 𝑙2.
𝑓 (𝑚1, 𝑙′) = (𝑚′

1, 𝑥1, 𝑙1) ∧ 𝑔(𝑚2, 𝑙′) = (𝑚′
2, 𝑥2, 𝑙2)

⇒ 𝑚1 ⊎⃗ 𝑚′
1 ≈𝑙 𝑚2 ⊎⃗ 𝑚′

2 ∧ 𝑥1@𝑙1 ≋𝑙 𝑥2@𝑙2
Mem 𝑚1 ≈𝑙 𝑚2 dom𝑙(𝑚1) = dom𝑙(𝑚2) ∧

∀(𝑇 , 𝑟) ∈ dom(𝑚1) ∩ dom(𝑚2). 𝑚1(𝑇 , 𝑟)@𝑟label ≈𝑙 𝑚2(𝑇 , 𝑟)@𝑟label
⟦Γ⟧ 𝑠1 ≈𝑙 𝑠2 ∀𝑥 ∈ dom(Γ). 𝑠1(𝑥) ≈𝑙 𝑠2(𝑥)

dom𝑙(𝑚) ≜ {(𝑇 , 𝑟) ∈ dom(𝑚) ∣ 𝑟stamp ≼ 𝑙}

Figure 17. Notions of indistinguishability on CPOs. The definitions assume that the CPOs 𝑋 and 𝑌 carry such notions as well.

5 Noninterference
With the semantics pinned down, we are ready for our first
main result: showing that GLIO satisfies termination- and
error-insensitive noninterference. Informally, an attacker
cannot tell the difference between two successful runs of a
program that differ only on their secret inputs. To formalize
this claim, we follow Abadi et al.’s work on DCC [1] and
define a family of relations (≈𝑙)𝑙∈𝐿 that characterize what
elements of ⟦𝑇⟧ are indistinguishable to an observer bounded
by 𝑙 (Figure 17).3 The definition is again circular, but it can be
solved with Pitts’ framework of relational structures [6, 21],
as explained in Appendix A.3.

For base types and references, being indistinguishable
simply means being equal. There are two notions of indis-
tinguishability for Lab ̄𝑙(𝑋): weak (≋𝑙) and strong (≈𝑙). Weak
indistinguishability is only an auxiliary notion used to define
indistinguishability for computations (LIO ̄𝑙1, ̄𝑙2(𝑋)). We use
two notions because GLIO guarantees that the label of a
labeled value reveals nothing about the value, whereas the
PC label at the end of a computation might reveal something
about its result. An observer bounded by 𝑙 can distinguish
two memories if they differ either in their sets of low-stamp
locations, dom𝑙, or in two values stored at a low location.

Our goal is to prove ⟦𝑒⟧ ≈𝑙 ⟦𝑒⟧ for every well-typed pro-
gram 𝑒. This implies that programs do not leak secrets; for
example, if 𝑙 = ⊥ and 𝑒 ∶ Lab?(Bool)

⊥,⊥
−−−→ Bool, we find

that ⟦𝑒⟧(1@⊤)(∅, ⊥) and ⟦𝑒⟧(0@⊤)(∅, ⊥) output the same
boolean if both terminate successfully.

Theorem 5.1 (Noninterference). If Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇, we have

⟦𝑒⟧ ≈𝑙 ⟦𝑒⟧ ∶ ⟦Γ⟧
cont
−−−−→ LIO ̄𝑙1, ̄𝑙2(⟦𝑇⟧).

3It would be natural to expect indistinguishability to be decreasing with
respect to 𝑙: the more power the attacker has, the more can be distinguished.
However, this property is not required to prove noninterference, as evi-
denced by similar proofs in the literature [1, 23].

Sketch. By induction on the typing derivation of 𝑒. The se-
mantics of the language is defined by using the monadic in-
terface of Figure 15 to compose the operations in Figures 14
and 16. Thus, we just have to show that indistinguishability
is preserved by these operations and under composition. The
details are discussed in Appendix A.3. �

6 Gradual guarantees
Themain novelty of GLIO is that it satisfies the dynamic grad-
ual guarantee [27]: making label annotations more precise
can only introduce dynamic type errors, without otherwise
changing the behavior of the program.

Theorem 6.1 (Dynamic Gradual Guarantee, Simple). Sup-
pose that 𝑒 ⊲ 𝑒′ with ⊢⊥, ̄𝑙2 𝑒 ∶ 𝑇 and ⊢⊥, ̄𝑙2 𝑒′ ∶ 𝑇 ′.

• If ⟦𝑒⟧(∅)(∅, ⊥) = ⊥, then ⟦𝑒′⟧(∅)(∅, ⊥) = ⊥.
• If ⟦𝑒⟧(∅)(∅, ⊥) = (𝑚, 𝑣, 𝑙), then there exist 𝑚′ and 𝑣′
such that ⟦𝑒′⟧(∅)(∅, ⊥) = (𝑚′, 𝑣′, 𝑙).

The premise 𝑒 ⊲ 𝑒′, defined on Figure 18, says that 𝑒′ is
obtained from 𝑒 by replacing some labels on type annota-
tions with ?. The conclusion says that 𝑒 and 𝑒′ must behave
similarly, except when 𝑒 throws an error, in which case 𝑒′
can do whatever it wants. In particular, 𝑒′ can only fail if 𝑒
does.

GLIO also satisfies the static gradual guarantee, which
says that removing label annotations from a term does not
break type checking.

Theorem 6.2 (Static Gradual Guarantee). If Γ ⊲ Γ′, ̄𝑙1 ⊲ ̄𝑙′1,
𝑒 ⊲ 𝑒′, and Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇, there exist ̄𝑙′2 ⊳ ̄𝑙2 and 𝑇 ′ ⊳ 𝑇 such
that Γ′ ⊢ ̄𝑙′1, ̄𝑙′2 𝑒′ ∶ 𝑇 ′.

The proof of this result is a straightforward induction
on the typing derivation. Theorem 6.1, on the other hand,
requires more care, as the statement is not strong enough to
be established directly by induction. We use a generalization
similar to prior formulations of the DGG [19, 20].
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Labels
𝑙 ∈ 𝐿
𝑙 ⊲ ?

𝑙 ∈ 𝐿
𝑙 ⊲ 𝑙

Types
𝑇 ∈ {Unit,Bool, Label}

𝑇 ⊲ 𝑇

̄𝑙1 ⊲ ̄𝑙2 𝑇1 ⊲ 𝑇2

Ref ̄𝑙1(𝑇1) ⊲ Ref ̄𝑙2(𝑇2)

̄𝑙1 ⊲ ̄𝑙2 𝑇1 ⊲ 𝑇2

Lab ̄𝑙1(𝑇1) ⊲ Lab ̄𝑙2(𝑇2)

̄𝑙1 ⊲ ̄𝑙′1 ̄𝑙2 ⊲ ̄𝑙′2 𝑇1 ⊲ 𝑆1 𝑇2 ⊲ 𝑆2

𝑇1
̄𝑙1, ̄𝑙2−−−→ 𝑇2 ⊲ 𝑆1

̄𝑙′1, ̄𝑙′2−−−→ 𝑆2

Environments
dom(Γ1) = dom(Γ2) ∀𝑥. Γ1(𝑥) ⊲ Γ2(𝑥)

Γ1 ⊲ Γ2

Terms

𝑒 ⊲ 𝑒
𝑒1 ⊲ 𝑒′1 𝑇 ⊲ 𝑇 ′ 𝑒2 ⊲ 𝑒′2

let(𝑒1, 𝑥 ∶ 𝑇 . 𝑒2) ⊲ let(𝑒′1, 𝑥 ∶ 𝑇 ′. 𝑒′2)

𝑒1 ⊲ 𝑒′1 𝑒2 ⊲ 𝑒′2
if(𝑥, 𝑒1, 𝑒2) ⊲ if(𝑥, 𝑒′1, 𝑒′2)

̄𝑙 ⊲ ̄𝑙′ 𝑇 ⊲ 𝑇 ′ 𝑒 ⊲ 𝑒′

fun(𝑥 ∶ ̄𝑙 𝑇 . 𝑒) ⊲ fun(𝑥 ∶ ̄𝑙′ 𝑇
′ 𝑒′)

𝑒 ⊲ 𝑒′

toLab(𝑙, 𝑒) ⊲ toLab(𝑙, 𝑒′)
𝑒 ⊲ 𝑒′

toLab(𝑥, 𝑒) ⊲ toLab(𝑥, 𝑒′)

Figure 18. Syntactic dynamism relations

Theorem 6.3 (Dynamic Gradual Guarantee, General). If
Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇, Γ′ ⊢ ̄𝑙′1, ̄𝑙′2 𝑒′ ∶ 𝑇 ′, Γ ⊲ Γ′, ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 (∀𝑖 ∈ {1, 2}),

𝑒 ⊲ 𝑒′ and 𝑇 ⊲ 𝑇 ′, then ⟦𝑒⟧ ⊲ ⟦𝑒′⟧ ∶ ⟦Γ⟧
cont
−−−−→ LIO ̄𝑙1, ̄𝑙2(⟦𝑇⟧) ⊲

⟦Γ′⟧
cont
−−−−→ LIO ̄𝑙′1, ̄𝑙′2(⟦𝑇

′⟧).

The error approximation relations ⟦𝑒⟧ ⊲ ⟦𝑒′⟧ in the con-
clusion are defined on Figure 19. Like indistinguishability
in Section 5, they are constructed using Pitts’ work [6, 21]
(cf. Appendix A.4). A technical subtlety is that the relations
are heterogeneous: loosening a type 𝑇 in a term to 𝑆 requires
relating of elements of ⟦𝑇⟧ and ⟦𝑆⟧. Most clauses of the defi-
nition simply lift error approximation pointwise, except for
LIO, which exhibits the same asymmetry between 𝑒 and 𝑒′
in Theorem 6.1.

The proof of Theorem 6.3, detailed in Appendix A.4, fol-
lows the same strategy used for noninterference: we show

that the various operations in the semantics preserve ⊲,
and then argue by composition. This is where it is impor-
tant to ensure that casts do not modify labels: to prove the
correctness of operations with casts, we must ensure that
⟦𝑇 ≼ 𝑆⟧ ⊲ ⟦𝑇 ′ ≼ 𝑆′⟧ when 𝑇 ⊲ 𝑇 ′ and 𝑆 ⊲ 𝑆′. If the choice
of 𝑆 or 𝑆′ had an impact on labels in the results, these two
functions could not be related.

7 Related work
Gradual Typing and IFC. One of our main inspirations

comes from GSLRef [32], a gradual language for fine-grained
IFC. GSLRef suggests an intriguing tension between gradual
typing and noninterference. In principle, it could have vali-
dated the dynamic gradual guarantee by construction, as it is
derived from the AGT methodology [32]. However, a direct
application of AGT violated noninterference, just like the
example in Figure 1 does if we remove the NSU check from
𝜆info . The solution of GSLRef, unfortunately, was to include
an analog of the NSU check that breaks the dynamic gradual
guarantee. As hinted in the Introduction, we can witness
this failure by adapting the example in Figure 1. The reasons,
however, differ slightly from what we’ve seen earlier.

Unlike most dynamic IFC systems, GSLRef does not de-
scribe run-time secrecy with single labels, but with intervals
of plausible labels. As the program runs, these intervals are
refined to rule out labels that invalidate security checks;
if they become empty, an error is signaled. This represen-
tation, inherited from AGT, allows omitting label annota-
tions entirely from terms and types—a convenient feature
for retrofitting IFC to existing programs. Because of the inter-
vals, the checks used by GSLRef to enforce noninterference
are more complex than the classic NSU; nevertheless, the
gradual guarantee still breaks in the program of Figure 1,
because the cast induced by the annotation on b ends up
modifying the intervals tracked by the program, and thus
the result of the NSU analogue.

Rather than adopting GSLRef intervals, GLIO resorts to
classic IFC labels and NSU checks. We believe that this choice
simplifies the use of first-class labels in a gradual setting, as
it is unclear what the semantics of a test labelOf b == S
should be if labelOf b returns a set of plausible labels rather
than a single label—for instance, the gradual guaranteewould
force this result to be consistent for all possible program
annotations. Moreover, we can recover some of the benefits
of label intervals because most values are unlabeled in our
coarse-grained discipline, and because we could easily use a
default label when allocating references (e.g. the PC label).

As far as we know, GSLRef was the first work to con-
sider the dynamic gradual guarantee for an IFC language.
ML-GS [11] is an earlier design that predates the guarantee,
which it can violate by rewriting the program of Figure 1 to
classify data through type casts. Other languages use differ-
ent interpretations of gradual typing from the one adopted
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CPOs Relation Definition
1, 2, 𝐿,Ref ̄𝑙 𝑥 ⊲ 𝑦 𝑥 = 𝑦
Lab ̄𝑙(𝑋) 𝑥1@𝑙1 ⊲ 𝑥2@𝑙2 𝑥1 ⊲ 𝑥2 ∧ 𝑙1 = 𝑙2
𝑋

cont
−−−−→𝑌 𝑓 ⊲ 𝑔 ∀𝑥 ⊲ 𝑦. 𝑓 (𝑥) ⊲ 𝑔(𝑦)

LIO ̄𝑙1, ̄𝑙2(𝑋) 𝑓 ⊲ 𝑔 ∀𝑚1 ⊲ 𝑚2, 𝑙. (𝑓 (𝑚1, 𝑙) = ⊥ ⇒ 𝑔(𝑚2, 𝑙) = ⊥) ∧
∀𝑚′

1, 𝑥′
1, 𝑙′. 𝑓 (𝑚1, 𝑙) = (𝑚′

1, 𝑥1, 𝑙′)
⇒ ∃𝑚′

2, 𝑥2. 𝑔(𝑚2, 𝑙) = (𝑚′
2, 𝑥2, 𝑙′) ∧ 𝑚′

1 ⊲ 𝑚′
2 ∧ 𝑥1 ⊲ 𝑥2

Mem 𝑚1 ⊲ 𝑚2 dom(𝑚1) = dom(𝑚2) ∧ ∀𝑟 ∈ dom(𝑚1). 𝑚1(𝑟) ⊲ 𝑚2(𝑟)
⟦Γ⟧ 𝑠1 ⊲ 𝑠2 ∀𝑥 ∈ dom(Γ), 𝑠1(𝑥) ⊲ 𝑠2(𝑥)

Figure 19. Error approximation on CPOs. The relations are heterogeneous, and the left column should be formally understood
as describing pairs of CPOs (e.g. the second row defines a relation (⊲ ̄𝑙 , ̄𝑙′,𝑋 ,𝑋 ′) ⊆ Lab ̄𝑙(𝑋)×Lab ̄𝑙′(𝑋

′) in terms of another relation
(⊲𝑋,𝑋 ′) ⊆ 𝑋 × 𝑋 ′). We will write 𝑥 ⊲ 𝑦 ∶ 𝑋 ⊲ 𝑌 to indicate the CPOs involved in the relation.

here (which goes back to the criteria of Siek et al. [27]), mak-
ing it hard to provide analogues of the gradual guarantee,
because removing annotations might require adding casts
to please the type checker. This behavior appears in the lan-
guage of Disney and Flanagan [10], which interprets missing
labels in types as maximum secrecy, and in LJGS [12].

Dependent Types and IFC. Moving further away from
gradual typing, we find designs that use dependent types to
make static IFCmore flexible, deferring label checks to execu-
tion time.This category includes the HLIOHaskell library [9]
and Jif [18, 35]. Instead of making the checking of dynamic se-
curity levels automatic and guided by the structure of types,
these systems require programmers to manually check the
safety of operations that involve dynamic labels. Thanks to
first-class labels, our language allows programmers to per-
form these tests manually, as in the maybeUpdate function
in Figure 5. However, because of the lack of dependent types,
our type system cannot use the information learned from
these tests to rule out errors statically. Bridging the gap be-
tween these two kinds of analyses is an interesting avenue
for future work.

Gradual Types and Parametricity. Until recently, the
interaction between polymorphism and gradual typing ex-
hibited problems similar to the ones we saw for IFC: there
had been several proposals of languages that combine the
two features [2, 16, 33], but none of them were able to estab-
lish both the dynamic gradual guarantee and parametricity.
Indeed, Toro et al. [33] conjectured both properties to be
fundamentally incompatible.

To solve this issue, New et al. [20] proposed PolyGν, a poly-
morphic calculus based on term-level sealing. In PolyGν, if
we instantiate a polymorphic term 𝑒 ∶ ∀𝜈𝑋. 𝑋 → 𝑋 with Int,
the result is not of type Int → Int, but rather of type 𝑋 → 𝑋,
where 𝑋 is a fresh sealed type generated during execution.
To actually use the instantiated function, the sealed type 𝑋
comes with two conversion functions seal𝑋 ∶ Int → 𝑋 and
unseal𝑋 ∶ 𝑋 → Int; thus, instead of 𝑒 [Int] 1+1, as we would

write in System F, we would have to write

unseal𝑋(𝑒{𝑋 ≅ Int}(seal𝑋 1)) + 1

for the program to be accepted. PolyGν satisfies both the
DGG and parametricity; crucially, its DGG does not apply to
programs that remove occurrences of seal and unseal, since
those live at the term level. Our abandon of type-guided
classification is similar: run-time labels are chosen at the
term level, and modifying them falls out of the scope of the
DGG.This suggests that future tensions with the DGGmight
be handled by performing at the term level decisions that in
fully static systems are usually left implicit at the type level.

8 Conclusion
We presented GLIO, a gradual IFC type system based on the
LIO library [30] that features higher-order functions, gen-
eral references, coarse-grained IFC, security subtyping and
first-class labels. In addition to noninterference, our type sys-
tem validates the dynamic gradual guarantee, an important
correctness criterion for gradual typing. To avoid pitfalls en-
countered in previous work, we decoupled type annotations
from data classification, which our language expresses with
typical operations from coarse-grained dynamic IFC.
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Reconciling noninterference and gradual typing

𝛾 ∶ ̄𝐿 → 𝒫 (𝐿)
𝛾(𝑙) ≜ {𝑙}
𝛾 (?) ≜ 𝐿

𝛾 ∶ Type → 𝒫 (Type)
𝛾 (Unit) ≜ {Unit}
𝛾 (Bool) ≜ {Bool}
𝛾 (Label) ≜ {Label}

𝛾 (Ref ̄𝑙(𝑇 )) ≜ {Ref𝑙(𝑇 ′) ∣ 𝑙 ∈ 𝛾( ̄𝑙), 𝑇 ′ ∈ 𝛾(𝑇 )}

𝛾(Lab ̄𝑙(𝑇 )) ≜ {Lab𝑙(𝑇 ′) ∣ 𝑙 ∈ 𝛾( ̄𝑙), 𝑇 ′ ∈ 𝛾(𝑇 )}

𝛾 (𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆) ≜ {𝑇 ′ 𝑙1,𝑙2−−−→ 𝑆′ ∣

𝑇 ′ ∈ 𝛾(𝑇 ), 𝑙1 ∈ 𝛾( ̄𝑙1),

𝑙2 ∈ 𝛾( ̄𝑙2), 𝑆′ ∈ 𝛾(𝑆)}

Figure 20. Concretization for gradual labels and types

(−)∘ ∶ Type → Type
Unit∘ ≜ Unit
Bool∘ ≜ Bool

Label∘ ≜ Label
Ref ̄𝑙(𝑇 )∘ ≜ Ref?(𝑇 ∘)
Lab ̄𝑙(𝑇 )∘ ≜ Lab?(𝑇 ∘)

(𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆)∘ ≜ 𝑇 ∘ ?,?

−−→ 𝑆∘

Figure 21. Label erasure

replaces all label annotations in 𝑇 by ?. Its definition is pro-
vided in Figure 21. As shown in the following result, erasure,
precision and consistent subtyping are naturally related:

Lemma A.1. Label erasure satisfies the following properties
for all 𝑇 , 𝑆 ∈ Type:

• (𝑇 ∘)∘ = 𝑇 ∘.
• If 𝑇 ⊲ 𝑆, then 𝑇 ⊲ 𝑆∘. In particular, 𝑆 ⊲ 𝑆∘.
• If 𝑇 ∘ ⊲ 𝑆∘, then 𝑇 ∘ = 𝑆∘.
• If 𝑇 ≼ 𝑆, then 𝑇 ∘ = 𝑆∘.

A.2 Defining the interpretation domains
The CPOs used to interpret types are defined by solving a
domain equation with the method of Smyth and Plotkin [29].
We express the domain equation using a mixed-variance
functor 𝐹 on the CPO-category CPOType

⊥ , whose action on
objects is shown on Figure 22. Here,CPO⊥ denotes the Kleisli
category of the lifting monad (−)⊥ on CPO—that is, objects
are CPOs, and morphisms are continuous functions of the

form 𝑋
cont
−−−−→𝑌⊥ equipped with Kleisli composition. We con-

struct an object 𝐷 ∈ CPOType
⊥ equipped with an isomor-

phism fold ∶ 𝐹(𝐷, 𝐷) ≅ 𝐷 by showing that the morphisms
of CPOType

⊥ form a CPO with a least element and that the
action of 𝐹 on morphisms is continuous, among other prop-
erties. We define the interpretation of types by setting

⟦𝑇⟧ ≜ 𝐷(𝑇 )
LIO ̄𝑙1, ̄𝑙2(𝑋) ≜ LIOF ̄𝑙1, ̄𝑙2(𝐷, 𝐷, 𝑋)

Mem ≜ MemF(𝐷),

which yields the identities of Figure 12.
You may recall that our semantics treats the result in that

computations in LIO as memory updates rather than the
final memory. This choice simplifies the definition of LIOF
because its action on morphisms is obtained by composing
the actions of simpler pieces: (−)

cont
−−−−→(−)⊥, MemF, etc. If

instead we interpreted the result as being the final memory,
we would have to modify LIOF to require that the contents
of certain memory locations remain unchanged in the result,
which would be inconvenient because the standard action
of the functor that maps (𝑋−, 𝑋+, 𝑌 ) to

MemF(𝑋−) × ↓ ̄𝑙1
cont
−−−−→Error(MemF(𝑋+) × 𝑌 × ↓ ̄𝑙2)⊥

does not preserve this property.

A.3 Proving noninterference
To define the indistinguishability relations (≈𝑙) of Section 5,
we apply the method of Pitts [21], following the formulation
of Azevedo de Amorim et al. [6]. We define a CLat∧-fibration
𝑞 ∶ Ind → CPOType

⊥ by a change of base:

Ind AdmType ×𝐿

CPOType
⊥ CPOType ×𝐿

⊥

𝑞
⌟

𝑝Type ×𝐿

𝑓

where 𝑝 ∶ Adm → CPO⊥ is the CLat∧-fibration of subsets
of CPOs that are closed under limits of chains (so-called ad-
missible subsets), and 𝑓 (𝑋)(𝑇 , 𝑙) ≜ 𝑋(𝑇 ) × 𝑋(𝑇 ). This means
that each object of Ind can be seen as a pair (𝑋 , 𝑅), where
𝑋 ∈ CPOType

⊥ and (𝑅(𝑇 , 𝑙) ⊆ 𝑋(𝑇 ) × 𝑋(𝑇 ))𝑇∈Type,𝑙∈𝐿 is
a family of relations closed under limits of chains. More-
over, 𝑞 is admissible, in the sense that Ind is canonically a
CPO-category derived from AdmType ×𝐿, and this structure
is preserved by 𝑞. We can lift 𝐹 to a functor ̂𝐹≈ on Ind:

Ind𝑜𝑝 × Ind Ind

(CPOType
⊥ )

𝑜𝑝
× CPOType

⊥ CPOType
⊥

̂𝐹 ≈

𝑞𝑜𝑝×𝑞 𝑞

𝐹
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𝐹 ∶ (CPOType
⊥ )

𝑜𝑝
× CPOType

⊥ → CPOType
⊥

𝐹(𝑋−, 𝑋+)(Unit) ≜ 1
𝐹(𝑋−, 𝑋+)(Bool) ≜ 2
𝐹(𝑋−, 𝑋+)(Label) ≜ 𝐿

𝐹(𝑋−, 𝑋+)(Ref ̄𝑙(𝑇 )) ≜ Ref ̄𝑙
𝐹(𝑋−, 𝑋+)(Lab ̄𝑙(𝑇 )) ≜ Lab ̄𝑙(𝑋

+(𝑇 ))

𝐹(𝑋−, 𝑋+) (𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆) ≜ 𝑋−(𝑇 )

cont
−−−−→ LIOF ̄𝑙1, ̄𝑙2 (𝑋

−, 𝑋+, 𝑋+(𝑆))

LIOF ̄𝑙1, ̄𝑙2 ∶ (CPOType
⊥ )

𝑜𝑝
× CPOType

⊥ ×CPO⊥ → CPO⊥

LIOF ̄𝑙1, ̄𝑙2(𝑋
−, 𝑋+, 𝑌 ) ≜ {𝑓 ∶ MemF(𝑋−) × ↓ ̄𝑙1

cont
−−−−→Error(MemF(𝑋+) × 𝑌 × ↓ ̄𝑙2)⊥ ∣

∀𝑚1, 𝑙1, 𝑥, 𝑚2, 𝑙2. 𝑓 (𝑚1, 𝑙1) = (𝑚2, 𝑥, 𝑙2) ⇒
𝑙1 ≼ 𝑙2 ∧ valid(𝑙1, 𝑚1, 𝑚2)}

valid(𝑙1, 𝑚1, 𝑚2) ≜
∀(𝑇 , 𝑟) ∈ dom(𝑚2).

𝑙1 ≼ 𝑟label ∧ (𝑙1 ⋠ 𝑟stamp ⇒ (𝑇 , 𝑟) ∈ dom(𝑚1))

MemF ∶ CPOType
⊥ → CPO⊥

MemF(𝑋) ≜ (𝑇 ∶ Type∘) × Ref? ⇀fin 𝑋(𝑇 )

Figure 22. Functors used to interpret types

whose action on objects is given by

̂𝐹≈((𝑋−, 𝑅−), (𝑋+, 𝑅+))(𝑇 , 𝑙)

≜ (𝐹(𝑋−, 𝑋+)(𝑇 ), ̂𝐹≈
𝑅 (𝑅

−, 𝑅+)(𝑇 , 𝑙)),

where the relations ̂𝐹≈
𝑅 are defined in Figure 23.The existence

of this lifting means in particular that ̂𝐹≈
𝑅 depends covariantly

on 𝑅+ and contravariantly on 𝑅− and that it is admissible.
Roughly, the last condition holds because the predicates
involved in the definition either mention discrete CPOs, for
which all sets are admissible, or relations that are assumed
to be admissible.

By the aforementioned results, we can construct a family
of relations (𝑅≈

𝐷(𝑇 , 𝑙) ⊆ 𝐷(𝑇 ) × 𝐷(𝑇 ))𝑇∈Type,𝑙∈𝐿 such that

(fold𝑇(𝑥), fold𝑇(𝑦)) ∈ 𝑅≈
𝐷(𝑇 , 𝑙)

⇔ (𝑥, 𝑦) ∈ ̂𝐹≈
𝑅 (𝑅𝐷, 𝑅𝐷)(𝑇 , 𝑙).

Given a type 𝑇 and elements 𝑥, 𝑦 ∈ ⟦𝑇⟧, we pose 𝑥 ≈𝑙 𝑦 if
(𝑥, 𝑦) ∈ 𝑅≈

𝐷(𝑇 , 𝑙), and define similar notations for the auxil-
iary relations𝐺≈ of Figure 23. Modulo the fold isomorphisms,
this mostly matches the definitions given in Figure 17, except
for a slight gap between the definition of ≈𝑙 for LIO in Fig-
ure 17 and the relations 𝐺LIO of Figure 23: the conclusion of
the latter includes the input memories 𝑚1 and 𝑚2, which are
absent in the former. Nevertheless, we can show that the two
formulations are equivalent. We begin with the following
auxiliary result, which says that indistinguishability is trivial
when the initial PC label is high.

Lemma A.2. For all 𝑓 , 𝑔 ∈ LIO ̄𝑙1, ̄𝑙2 , suppose that

𝑓 (𝑚1, 𝑙1) = (𝑚′
1, 𝑥1, 𝑙′1) and 𝑔(𝑚2, 𝑙2) = (𝑚′

2, 𝑥2, 𝑙′2).

If 𝑚1 ≈𝑙 𝑚2 and 𝑙𝑖 ⋠ 𝑙 for all 𝑖, then 𝑚1 ⊎⃗ 𝑚′
1 ≈𝑙 𝑚2 ⊎⃗ 𝑚′

2 and
𝑥1@𝑙′1 ≋𝑙 𝑥2@𝑙′2.

Proof. Note that 𝑙′𝑖 ⋠ 𝑙, since 𝑙𝑖 ≼ 𝑙′𝑖 for all 𝑖 by the definition
of LIO. Hence, 𝑥1@𝑙′1 ≋𝑙 𝑥2@𝑙′2 vacuously. It remains to show
that 𝑚1 ⊎⃗ 𝑚′

1 ≈𝑙 𝑚2 ⊎⃗ 𝑚′
2.

We first prove that dom𝑙(𝑚1 ⊎⃗𝑚′
1) = dom𝑙(𝑚2 ⊎⃗𝑚′

2). Since
dom𝑙(𝑚1) = dom𝑙(𝑚2) and for all 𝑖 we have dom𝑙(𝑚𝑖 ⊎⃗𝑚′

𝑖 ) =
dom𝑙(𝑚𝑖) ∪ dom𝑙(𝑚′

𝑖 ), it suffices to show

dom𝑙(𝑚′
𝑖 ) ⊆ dom𝑙(𝑚𝑖)

for all 𝑖. If (𝑇 , 𝑟) ∈ dom(𝑚′
𝑖 ) and 𝑟stamp ≼ 𝑙, we must have

𝑙𝑖 ⋠ 𝑟stamp, since 𝑙𝑖 ≼ 𝑟stamp would imply the contradiction
𝑙𝑖 ≼ 𝑙. In this case, the definition of LIO guarantees that
(𝑇 , 𝑟) ∈ dom(𝑚𝑖), and hence (𝑇 , 𝑟) ∈ dom𝑙(𝑚𝑖).

To conclude, we must show

(𝑚1 ⊎⃗ 𝑚′
1)(𝑇 , 𝑟)@𝑟label ≈𝑙 (𝑚2 ⊎⃗ 𝑚′

2)(𝑇 , 𝑟)@𝑟label

for all 𝑇 and for all 𝑟, whenever both sides are defined. If
𝑟label ⋠ 𝑙, this is trivial. Otherwise, we must have (𝑚𝑖 ⊎⃗
𝑚′

𝑖 )(𝑇 , 𝑟) = 𝑚𝑖(𝑇 , 𝑟) for all 𝑖: if 𝑟label ≼ 𝑙 and 𝑟 ∈ dom(𝑚′
𝑖 ),

the definition of LIO applied to 𝑓 implies that 𝑙1 ≼ 𝑟label,
hence 𝑙1 ≼ 𝑙, a contradiction. We conclude because 𝑚1 ≈𝑙
𝑚2. �



Reconciling noninterference and gradual typing

̂𝐹≈
𝑅 (𝑅

−, 𝑅+)(𝑇 , 𝑙) ≜ {(𝑥, 𝑥) ∈ 𝑋(𝑇 ) × 𝑋(𝑇 )} (𝑇 = Unit,Bool, Label,Ref ̄𝑙(𝑇
′))

̂𝐹≈
𝑅 (𝑅

−, 𝑅+)(Lab ̄𝑙(𝑇 ), 𝑙) ≜ {(𝑥1@𝑙′, 𝑥2@𝑙′) ∈ 𝐺≈
Lab(𝑅

+(𝑇 , 𝑙), 𝑙)}
𝐺≈

Lab(𝑅, 𝑙) ≜ {(𝑥1@𝑙1, 𝑥2@𝑙2) ∣ ∀𝑖 ∈ {1, 2}. 𝑙𝑖 ≼ 𝑙 ⇒ ((𝑥1, 𝑥2) ∈ 𝑅 ∧ 𝑙1 = 𝑙2)}

̂𝐹≈
𝑅 (𝑅

−, 𝑅+)(𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆, 𝑙) ≜ {(𝑓 , 𝑔) ∣ ∀(𝑥, 𝑦) ∈ 𝑅−(𝑇 , 𝑙). (𝑓 (𝑥), 𝑔(𝑦)) ∈ 𝐺≈

LIO(𝑅−, 𝑅+, 𝑙)}
𝐺≈

LIO(𝑅−, 𝑅+, 𝑙) ≜ {(𝑓 , 𝑔) ∣ ∀𝑚1, 𝑚2, 𝑙′ ≼ 𝑙, 𝑚′
1, 𝑚′

2, 𝑥1, 𝑥2, 𝑙1, 𝑙2.
dom𝑙(𝑚1) = dom𝑙(𝑚2) ∧ (𝑚1, 𝑚2) ∈ 𝐺≈

Mem(𝑅−, 𝑙)
∧ 𝑓 (𝑚1, 𝑙′) = (𝑚′

1, 𝑥1, 𝑙1) ∧ 𝑔(𝑚2, 𝑙′) = (𝑚′
2, 𝑥2, 𝑙2) ⇒

dom𝑙(𝑚1 ⊎⃗ 𝑚′
1) = dom𝑙(𝑚2 ⊎⃗ 𝑚′

2)
∧ (𝑚′

1, 𝑚′
2) ∈ 𝐺≈

Mem(𝑅+, 𝑙) ∧ (𝑥1@𝑙1, 𝑥2@𝑙2) ∈ 𝐺≈
Lab(𝑅

+, 𝑙)}
𝐺≈

Mem(𝑅, 𝑙) ≜ {(𝑚1, 𝑚2) ∣ ∀(𝑇 , 𝑟) ∈ dom(𝑚1) ∩ dom(𝑚2).
(𝑚1(𝑇 , 𝑟)@𝑟label, 𝑚2(𝑇 , 𝑟)@𝑟label) ∈ 𝐺≈

Lab(𝑅(𝑇 , 𝑙), 𝑙)}

Figure 23. Relational lifting of 𝐹 for indistinguishability, along auxiliary definitions. Note that the 𝑅 parameter of 𝐺≈
Lab is a

single relation, and not a family of relations.

Lemma A.3. Given 𝑓 , 𝑔 ∈ LIO ̄𝑙1, ̄𝑙2(𝑋), we have 𝑓 ≈𝑙 𝑔 in the
sense of Figure 17 if and only if (𝑓 , 𝑔) ∈ 𝐺≈

LIO(𝑅≈
𝐷, 𝑅

≈
𝐷, 𝑙); that

is, when 𝑓 and 𝑔 satisfy

∀𝑚1 ≈𝑙 𝑚2, 𝑙′ ≼ 𝑙, 𝑚′
1, 𝑚′

2, 𝑥1, 𝑥2, 𝑙1, 𝑙2.
𝑓 (𝑚1, 𝑙′) = (𝑚′

1, 𝑥1, 𝑙1) ∧ 𝑔(𝑚2, 𝑙′) = (𝑚′
2, 𝑥2, 𝑙2) ⇒

dom𝑙(𝑚1 ⊎⃗ 𝑚′
1) = dom𝑙(𝑚2 ⊎⃗ 𝑚′

2)
∧ (𝑚′

1, 𝑚′
2) ∈ 𝐺≈

Mem(𝑅≈
𝐷, 𝑙)

∧ 𝑥1@𝑙1 ≋𝑙 𝑥2@𝑙2.

Proof. Write 𝑓 ≡𝑙 𝑔 for (𝑓 , 𝑔) ∈ 𝐺≈
LIO(𝑅≈

𝐷, 𝑅
≈
𝐷, 𝑙) and 𝑚1 ≡𝑙

𝑚2 for (𝑚1, 𝑚2) ∈ 𝐺≈
Mem(𝑅≈

𝐷, 𝑙). Note that 𝑚1 ≈𝑙 𝑚2 ⇔
dom𝑙(𝑚1) = dom𝑙(𝑚2) ∧ 𝑚1 ≡𝑙 𝑚2.

(⇒) When all the premises of 𝑓 ≡𝑙 𝑔 are satisfied, we
can apply the hypothesis 𝑓 ≈𝑙 𝑔 to conclude 𝑚1 ⊎⃗ 𝑚′

1 ≈𝑙
𝑚2⊎⃗𝑚′

2 and 𝑥1@𝑙1 ≋𝑙 𝑥2@𝑙2. It suffices to show that𝑚′
1 ≡𝑙 𝑚′

2.
Suppose that we have (𝑇 , 𝑟) ∈ dom(𝑚′

1) ∩ dom(𝑚′
2). This

implies (𝑇 , 𝑟) ∈ dom(𝑚1 ⊎⃗𝑚′
1) ∩dom(𝑚2 ⊎⃗𝑚′

2), which yields,
thanks to the above hypothesis,

𝑚′
1(𝑇 , 𝑟)@𝑟label

= (𝑚1 ⊎⃗ 𝑚′
1)(𝑇 , 𝑟)@𝑟label

≈𝑙 (𝑚2 ⊎⃗ 𝑚′
2)(𝑇 , 𝑟)@𝑟label

= 𝑚′
2(𝑇 , 𝑟)@𝑟label.

(⇐) Suppose we have values that satisfy the premises of
𝑓 ≈𝑙 𝑔. There are two cases to consider. If 𝑙′ ⋠ 𝑙, it suffices
to apply Lemma A.2. Otherwise, if 𝑙′ ≼ 𝑙, we can apply the
hypothesis 𝑓 ≡𝑙 𝑔 and conclude dom𝑙(𝑚1 ⊎⃗ 𝑚′

1) = dom𝑙(𝑚2 ⊎⃗
𝑚′

2), 𝑚′
1 ≡𝑙 𝑚′

2 and 𝑥1@𝑙1 ≋𝑙 𝑥2@𝑙2. We conclude by noting
that ≡𝑙 is stable under ⊎⃗, so that 𝑚1 ⊎⃗𝑚′

1 ≡𝑙 𝑚2 ⊎⃗𝑚′
2 and thus

𝑚1 ⊎⃗ 𝑚1 ≈𝑙 𝑚2 ⊎⃗ 𝑚′
2. �

We are now ready to proceed with the proof of noninter-
ference. We begin with a few auxiliary lemmas about the
indistinguishability relation.

Lemma A.4. Let ≡𝑙 denote one of ≈𝑙 or ≋𝑙.
1. 𝑥@𝑙′ ≈𝑙 𝑦@𝑙′ ⇔ 𝑥@𝑙′ ≋𝑙 𝑦@𝑙′
2. If 𝑥 ≈𝑙 𝑦, then 𝑥@𝑙′ ≡𝑙 𝑦@𝑙′ for any 𝑙′.
3. If 𝑥@𝑙𝑥 ≡𝑙 𝑦@𝑙𝑦, then 𝑥@(𝑙𝑥 ⋎ 𝑙′) ≡𝑙 𝑦@(𝑙𝑦 ⋎ 𝑙′).
4. If 𝑥@𝑙𝑥 ≋𝑙 𝑦@𝑙𝑦, then either 𝑙𝑥 = 𝑙𝑦 ≼ 𝑙 and 𝑥 ≈𝑙 𝑦 or

𝑙𝑥 ⋠ 𝑙 and 𝑙𝑦 ⋠ 𝑙.

Proof. 1. By definition, the first relation is just 𝑥@𝑙′ ≋𝑙
𝑦@𝑙′ ∧ 𝑙′ = 𝑙′.

2. By the previous item, it suffices to show 𝑥@𝑙′ ≋𝑙 𝑦@𝑙′.
Unfolding definitions, this means showing that 𝑙′ ≼ 𝑙
implies 𝑥 ≈𝑙 𝑦 and 𝑙′ = 𝑙′, which follows from the
assumption.

3. First, suppose that ≡𝑙 is ≋𝑙. Assume that one of 𝑙𝑥 ⋎ 𝑙′
or 𝑙𝑦 ⋎ 𝑙′ is below 𝑙. This implies that one of 𝑙𝑥 or 𝑙𝑦 is
below 𝑙. From the assumption 𝑥@𝑙𝑥 ≋𝑙 𝑦@𝑙𝑦, we find
that 𝑥 ≈𝑙 𝑦 and 𝑙𝑥 = 𝑙𝑦. We conclude by appealing to
the previous item.
Next, suppose that ≡𝑙 is ≈𝑙. By definition, we have
𝑥@𝑙𝑥 ≋𝑙 𝑦@𝑙𝑦 and 𝑙𝑥 = 𝑙𝑦. The previous sub-proof
shows 𝑥@(𝑙𝑥⋎𝑙′) ≋𝑙 𝑦@(𝑙𝑦⋎𝑙′), which implies 𝑥@(𝑙𝑥⋎
𝑙′) ≈𝑙 𝑦@(𝑙𝑦 ⋎ 𝑙′) by definition.

4. Either 𝑙𝑥 ≼ 𝑙 ∨ 𝑙𝑦 ≼ 𝑙 or 𝑙𝑥 ⋠ 𝑙 ∧ 𝑙𝑦 ⋠ 𝑙. In the latter case,
we are done. In the former case, the definition of ≋𝑙
implies 𝑥 ≈𝑙 𝑦 and 𝑙𝑥 = 𝑙𝑦, allowing us to conclude.

�

Lemma A.5. Indistinguishability on memories satisfies the
following properties.

1. ∅ ≈𝑙 ∅ ∶ Mem
2. If 𝑣1 ≈𝑙 𝑣2, then [𝑇 , 𝑟 ↦ 𝑣1] ≈𝑙 [𝑇 , 𝑟 ↦ 𝑣2]
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3. If 𝑚1 ≈𝑙 𝑚2 ∶ Mem and 𝑚′
1 ≈𝑙 𝑚′

2 ∶ Mem, then
𝑚1 ⊎⃗ 𝑚′

1 ≈𝑙 𝑚2 ⊎⃗ 𝑚′
2 ∶ Mem

Proof. 1. Trivial; the domains are empty, so there are no
locations to relate.

2. Since the domains on both sides are equal to {(𝑇 , 𝑟)},
we just have to show that 𝑣1@𝑟label ≈𝑙 𝑣2@𝑟label. This
follows from the assumption and from Lemma A.4.

3. Let 𝑚″
𝑖 = 𝑚𝑖 ⊎⃗ 𝑚′

𝑖 for 𝑖 ∈ {1, 2}. We first need to
show that the public domains are equal: dom𝑙(𝑚″

1 ) =
dom𝑙(𝑚″

2 ). This follows because

dom𝑙(𝑚″
1 )

= dom𝑙(𝑚1) ∪ dom𝑙(𝑚′
1)

= dom𝑙(𝑚2) ∪ dom𝑙(𝑚′
2) (by assumption)

= dom𝑙(𝑚″
2 ).

Now, suppose that we have some 𝑇 and some 𝑟 such
that (𝑇 , 𝑟) ∈ dom(𝑚″

1 ) ∩ dom(𝑚″
2 ). We need to show

𝑚″
1 (𝑇 , 𝑟)@𝑟label ≈𝑙 𝑚″

2 (𝑇 , 𝑟)@𝑟label.

Thus, assume 𝑟label ≼ 𝑙. The definition of references im-
plies that 𝑟stamp ≼ 𝑟label, so 𝑟stamp ≼ 𝑙 as well. The hy-
potheses imply dom𝑙(𝑚1) = dom𝑙(𝑚2) and dom𝑙(𝑚′

1) =
dom𝑙(𝑚′

2), and therefore

(𝑇 , 𝑟) ∈ dom(𝑚1) ⇔ (𝑇 , 𝑟) ∈ dom(𝑚2)
(𝑇 , 𝑟) ∈ dom(𝑚′

1) ⇔ (𝑇 , 𝑟) ∈ dom(𝑚′
2).

Since (𝑇 , 𝑟) ∈ dom(𝑚″
1 ) and (𝑇 , 𝑟) ∈ dom(𝑚″

2 ), there
are two cases to consider.
• (𝑇 , 𝑟) ∈ dom(𝑚′

1) and (𝑇 , 𝑟) ∈ dom(𝑚′
2). In this case,

for every 𝑖 ∈ {1, 2}we have𝑚″
𝑖 (𝑇 , 𝑟) = 𝑚′

𝑖 (𝑇 , 𝑟), and
we conclude by using the assumption 𝑚′

1 ≈𝑙 𝑚′
2.

• (𝑇 , 𝑟) ∈ dom(𝑚1) and (𝑇 , 𝑟) ∈ dom(𝑚2)while (𝑇 , 𝑟) ∉
dom(𝑚′

1) and (𝑇 , 𝑟) ∉ dom(𝑚′
2). In this case, for ev-

ery 𝑖 ∈ {1, 2} we have 𝑚″
𝑖 (𝑇 , 𝑟) = 𝑚𝑖(𝑇 , 𝑟), and we

conclude by using the assumption 𝑚1 ≈𝑙 𝑚2.
�

Lemma A.6. We have

1. return ≈𝑙 return ∶ 𝑋 → LIO ̄𝑙 , ̄𝑙(𝑋)
2. bind ≈𝑙 bind ∶ LIO ̄𝑙1, ̄𝑙2(𝑋) × (𝑋 → LIO ̄𝑙2, ̄𝑙3(𝑌 )) →

LIO ̄𝑙1, ̄𝑙3(𝑌 )

Proof. For the first point, unfolding definitions, we have to
show that, whenever 𝑥1 ≈𝑙 𝑥2, 𝑚1 ≈𝑙 𝑚2 and 𝑙′ ∈ ↓ ̄𝑙, we have
𝑚1 ≈𝑙 𝑚2 (which was assumed) and 𝑥1@𝑙′ ≋𝑙 𝑥2@𝑙′ (which
follows from Lemma A.4).

For the second point, suppose that we have 𝑓1 ≈𝑙 𝑓2 ∶
LIO ̄𝑙1, ̄𝑙2(𝑋) and 𝑔1 ≈𝑙 𝑔2 ∶ 𝑋 → LIO ̄𝑙2, ̄𝑙3(𝑌 ). We must show
that bind(𝑓1, 𝑔1) ≈𝑙 bind(𝑓2, 𝑔2) ∶ LIO ̄𝑙1, ̄𝑙3(𝑌 ). Unfolding
what this means, suppose that

bind(𝑓𝑖, 𝑔𝑖)(𝑚𝑖, 𝑙1) = (𝑚‴
𝑖 , 𝑣″𝑖 , 𝑙″𝑖 ) (𝑖 ∈ {1, 2}),

with𝑚1 ≈𝑙 𝑚2 and 𝑙1 ∈ ↓ ̄𝑙1. We have to show that𝑚‴
1 ≈𝑙 𝑚‴

2
and 𝑣″1 @𝑙″1 ≋𝑙 𝑣″2 @𝑙″2 . By the definition of bind, there are
𝑚′

𝑖 , 𝑚″
𝑖 , 𝑣′𝑖 and 𝑙′𝑖 for 𝑖 ∈ {1, 2} such that

𝑓𝑖(𝑚𝑖, 𝑙1) = (𝑚′
𝑖 , 𝑣′𝑖 , 𝑙′𝑖 ) 𝑔𝑖(𝑣′𝑖 )(𝑚𝑖 ⊎⃗ 𝑚′

𝑖 , 𝑙′𝑖 ) = (𝑚″
𝑖 , 𝑣″𝑖 , 𝑙″𝑖 )

𝑚‴
𝑖 = 𝑚′

𝑖 ⊎⃗ 𝑚″
𝑖 .

Thehypothesis on 𝑓𝑖 implies𝑚1 ⊎⃗𝑚′
1 ≈𝑙 𝑚2 ⊎⃗𝑚′

2, and 𝑣′1@𝑙′1 ≋𝑙
𝑣′2@𝑙′2. By Lemma A.4, there are two cases to consider. If
𝑙′1 = 𝑙′2 ≼ 𝑙, we know that 𝑣′1 ≈𝑙 𝑣′2. By the hypothesis on the
𝑔𝑖, we find that 𝑔1(𝑣′1) ≈𝑙 𝑔2(𝑣′2), implying 𝑚‴

1 ≈𝑙 𝑚‴
2 and

𝑣″1 @𝑙″1 ≋𝑙 𝑣″2 @𝑙″2 and concluding this case. Otherwise, 𝑙′𝑖 ⋠ 𝑙
for all 𝑖, and we conclude with Lemma A.2. �

We now show that the primitives used to define the se-
mantics also preserve indistinguishability.

Lemma A.7 (Label cast noninterference). If ̄𝑙1 ≼ ̄𝑙2, we have
⟦ ̄𝑙1 ≼ ̄𝑙2⟧ ≈𝑙 ⟦ ̄𝑙1 ≼ ̄𝑙2⟧ ∶ LIO ̄𝑙1, ̄𝑙2(1).

Proof. Suppose that we have 𝑚1 ≈𝑙 𝑚2, 𝑙′, 𝑚′
1, 𝑚′

2, 𝑙1 and 𝑙2
such that

⟦ ̄𝑙1 ≼ ̄𝑙2⟧(𝑚1, 𝑙′) = (𝑚′
1, 1, 𝑙1)

⟦ ̄𝑙1 ≼ ̄𝑙2⟧(𝑚2, 𝑙′) = (𝑚′
2, 1, 𝑙2).

We need to show that 𝑚1 ⊎⃗ 𝑚′
1 ≈𝑙 𝑚2 ⊎⃗ 𝑚′

2 and 1@𝑙1 ≋𝑙 1@𝑙2.
The last point follows by Lemma A.4, since 1 ≈𝑙 1 ∶ 1 by
definition. As for the first point, the definition of ⟦ ̄𝑙1 ≼ ̄𝑙2⟧
implies 𝑚′

1 = 𝑚′
2 = ∅, 𝑙1 = 𝑙2 = 𝑙′ and 𝑙′ ∈ ↓ ̄𝑙2, and we

conclude with the assumption 𝑚1 ≈𝑙 𝑚2. �

Lemma A.8 (Cast noninterference). If 𝑇 ≼ 𝑆, then ⟦𝑇 ≼
𝑆⟧ ≈𝑙 ⟦𝑇 ≼ 𝑆⟧ for all 𝑙.

Proof. We must show that applying a cast to indistinguish-
able values yields indistinguishable results. We proceed by
induction on the derivation of 𝑇 ≼ 𝑆. The cases of Unit, Bool,
Label and function types follow by composition, Lemma A.7,
and the induction hypotheses.

For 𝑓 = ⟦Lab ̄𝑙1(𝑇1) ≼ Lab ̄𝑙2(𝑇2)⟧, let 𝑣1@𝑙1 ≈𝑙 𝑣2@𝑙1 be in-
distinguishable values. Assume that 𝑓 (𝑣1@𝑙1) and 𝑓 (𝑣2@𝑙1)
succeed, otherwise the result is trivial. It must be the case that
there are values 𝑣′1 = ⟦𝑇1 ≼ 𝑇2⟧(𝑣1) and 𝑣′2 = ⟦𝑇1 ≼ 𝑇2⟧(𝑣2),
so that 𝑓 (𝑣𝑖@𝑙1) = return(𝑣′𝑖@𝑙1) for all 𝑖 ∈ {1, 2}. We con-
clude by combining Lemma A.6 with the induction hypothe-
sis on 𝑇1 and 𝑇2. The case of reference types is similar, but
without the need to analyze the inner cast. �

Lemma A.9. Each primitive 𝑓 ∶ 𝑋 in Figure 14 satisfies
𝑓 ≈𝑙 𝑓 ∶ 𝑋.

Proof. Case unlabel. Suppose we are given labeled values
𝑣1@𝑙′ ≈𝑙 𝑣2@𝑙′, memories𝑚1 ≈𝑙 𝑚2 and a label 𝑙1. Unfolding
definitions, we have to show that 𝑚1 ≈𝑙 𝑚2 (obvious) and
𝑣1@(𝑙′ ⋎ 𝑙1) ≋𝑙 𝑣2@(𝑙′ ⋎ 𝑙1) (which follows from Lemma A.4).

Case get ̄𝑙1, ̄𝑙2,𝑇
. Suppose we are given a reference 𝑟, mem-

ories 𝑚1 ≈𝑙 𝑚2, and a PC label 𝑙1. We can assume that
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𝑚𝑖(𝑇 ∘, 𝑟) = 𝑣𝑖 for some 𝑣𝑖, otherwise get returns an error and
the result is trivial. We have to show that 𝑣1@(𝑙1 ⋎ 𝑟label) ≋𝑙
𝑣2@(𝑙1 ⋎ 𝑟label). By Lemma A.4, it suffices to show that
𝑣1@𝑟label ≈𝑙 𝑣2@𝑟label, which follows from the hypothesis
on the memories.

Case set ̄𝑙1, ̄𝑙2,𝑇. Suppose we are given a reference 𝑟, values
𝑣1 ≈𝑙 𝑣2, memories 𝑚1 ≈𝑙 𝑚2 and a PC label 𝑙1. We can
assume that 𝑙1 ≼ 𝑟label and (𝑇 ∘, 𝑟) ∈ dom(𝑚𝑖) for all 𝑖, other-
wise set returns an error and the result is trivial. We have to
show 1@𝑙1 ≋𝑙 1@𝑙1, which is trivial, and

𝑚1 ⊎⃗ [𝑇 ∘, 𝑟 ↦ 𝑣1] ≈𝑙 𝑚2 ⊎⃗ [𝑇 ∘, 𝑟 ↦ 𝑣2],

which follows from Lemma A.5.
Note that the side conditions 𝑙1 ≼ 𝑟label and (𝑇 ∘, 𝑟) ∈

dom(𝑚𝑖) are not invoked to show noninterference for this
case. Instead, they are needed to ensure that set returns
an element of LIO, whose properties guarantee that bind
respects indistinguishability.

Case new ̄𝑙1, ̄𝑙2,𝑇. Let 𝑣1 ≈𝑙 𝑣2 be values, 𝑚1 ≈𝑙 𝑚2 be memo-
ries, 𝑙1 be a PC label, and 𝑙2 be a label for the new reference.
Assume that 𝑙1 ≼ 𝑙2, otherwise the two sides raise an error
and the result is trivial. The hypotheses on 𝑚1 and 𝑚2 imply
that min{𝑛 ∣ (𝑇 ∘, (𝑛, 𝑙1, 𝑙2)) ∉ dom(𝑚𝑖)} is the same for 𝑖 = 1
and 𝑖 = 2. Call this number 𝑛, and set 𝑟 = (𝑛, 𝑙1, 𝑙2).The results
of each execution are of the form ([𝑇 ∘, 𝑟 ↦ 𝑣𝑖], 𝑟 , 𝑙1), and
we have to show that 𝑚1 ⊎⃗ [𝑇 ∘, 𝑟 ↦ 𝑣1] ≈𝑙 𝑚2 ⊎⃗ [𝑇 ∘, 𝑟 ↦ 𝑣2]
and 𝑟@𝑙1 ≋𝑙 𝑟@𝑙1. The first point follows by Lemma A.5. As
for the second point, it holds by Lemma A.4, since 𝑟 ≈𝑙 𝑟
holds trivially.

Case toLab ̄𝑙1, ̄𝑙2, ̄𝑙3 . Suppose that we are given 𝑙1 ∈ 𝛾( ̄𝑙1),
𝑓1 ≈𝑙 𝑓2 ∶ LIO ̄𝑙2, ̄𝑙3(𝑋), 𝑚1 ≈𝑙 𝑚2. By the definition of toLab,
we can suppose that 𝑓𝑖(𝑚𝑖, 𝑙2) = (𝑚′

𝑖 , 𝑣𝑖, 𝑙′𝑖 ) and 𝑙′𝑖 ≼ 𝑙1 ⋎ 𝑙2
for some 𝑚′

𝑖 , 𝑣𝑖 and 𝑙′𝑖 , with 𝑖 ∈ {1, 2}. We have to show that
𝑚1 ⊎⃗ 𝑚′

1 ≈𝑙 𝑚2 ⊎⃗ 𝑚′
2 and 𝑣1@𝑙1@𝑙2 ≋𝑙 𝑣2@𝑙1@𝑙2. By the

hypothesis on the 𝑓𝑖, we know that the first condition holds,
and also that 𝑣1@𝑙′1 ≋𝑙 𝑣2@𝑙′2. If 𝑙2 ≼ 𝑙 and 𝑙1 ≼ 𝑙, we know
that 𝑙′1 and 𝑙′2 are below 𝑙 as well. Hence, 𝑣1 ≈𝑙 𝑣2, and we
conclude by applying Lemma A.4. �

Taken together, these lemmas lead to our main result.

Theorem 5.1 (Noninterference). If Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇, we have

⟦𝑒⟧ ≈𝑙 ⟦𝑒⟧ ∶ ⟦Γ⟧
cont
−−−−→ LIO ̄𝑙1, ̄𝑙2(⟦𝑇⟧).

Proof. By induction on the typing derivation of 𝑒, combining
the previous preservation results. We detail some cases here.

Case pcLabel. Suppose we are given memories 𝑚1 ≈𝑙 𝑚2
and a PC label 𝑙1. By Lemmas A.4 and A.5, we know ∅ ≈𝑙 ∅
and 𝑙1@𝑙1 ≋𝑙 𝑙1@𝑙1, which concludes this case.

Case fun. It suffices to show that 𝜆𝑣.⟦𝑒⟧(𝑠1[𝑥 ↦ 𝑣]) ≈𝑙
𝜆𝑣.⟦𝑒⟧(𝑠2[𝑥 ↦ 𝑣]) assuming that ⟦𝑒⟧ ≈𝑙 ⟦𝑒⟧ and 𝑠1 ≈𝑙 𝑠2.

Thus, we have to show ⟦𝑒⟧(𝑠1[𝑥 ↦ 𝑣1]) ≈𝑙 ⟦𝑒⟧(𝑠2[𝑥 ↦ 𝑣2])
for all arguments 𝑣1 ≈𝑙 𝑣2. This follows because 𝑠1[𝑥 ↦
𝑣1] ≈𝑙 𝑠2[𝑥 ↦ 𝑣2], and by the definition of indistinguishabil-
ity for functions.

Case app. By composition, it suffices to show that the last
clause of the semantics of app respects indistinguishability.
Unfoldingwhat thismeans, we have to show that 𝑠1(𝑓 )(𝑣1) ≈𝑙
𝑠2(𝑓 )(𝑣2) whenever 𝑠1 ≈𝑙 𝑠2 ∶ ⟦Γ⟧, Γ(𝑓 ) = 𝑇

̄𝑙1, ̄𝑙2−−−→ 𝑆 and
𝑣1 ≈𝑙 𝑣2 ∶ ⟦𝑇⟧. This follows by the definition of indistin-

guishability for ⟦𝑇
̄𝑙1, ̄𝑙2−−−→ 𝑆⟧. �

A.4 Proving the gradual guarantees
The construction of the error approximation relations is sim-
ilar to indistinguishability, but takes place in the admissible
CLat∧-fibration 𝑟 ∶ Appr → CPOType

⊥ defined as follows.
An object of Appr is a pair (𝑋 , 𝑅) where 𝑋 ∈ CPOType

⊥ and
(𝑅(𝑇 ⊲ 𝑆) ⊆ 𝑋(𝑇 ) × 𝑋(𝑆))𝑇⊲𝑆 is a family of chain-complete
relations. A morphism of type (𝑋 , 𝑅) → (𝑌 , 𝑈 ) is a family
of partial functions (𝑓𝑇 ∶ 𝑋(𝑇 ) → 𝑌(𝑇)⊥)𝑇∈Type such that,
for every (𝑥𝑇, 𝑥𝑆) ∈ 𝑅(𝑇 ⊲ 𝑆), either 𝑓𝑇(𝑥𝑇) = 𝑓𝑆(𝑥𝑆) = ⊥
or 𝑓𝑇(𝑥𝑇) = 𝑦𝑌 ∈ 𝑌(𝑇 ), 𝑓𝑆(𝑥𝑆) = 𝑦𝑆 ∈ 𝑌(𝑆) and (𝑦𝑇, 𝑦𝑆) ∈
𝑈 (𝑇 ⊲ 𝑆). The 𝑟 functor simply projects the 𝑋 component
and acts as the identity on morphisms.

We lift 𝐹 to a functor ̂𝐹⊲ on Appr:

Appr𝑜𝑝 ×Appr Appr

(CPOType
⊥ )

𝑜𝑝
× CPOType

⊥ CPOType
⊥

̂𝐹⊲

𝑞𝑜𝑝×𝑞 𝑞

𝐹

whose definition is given in Figure 19, following similar
conventions as in Appendix A.3. This allows us to construct
(𝑅⊲

𝐷(𝑇 ⊲ 𝑆) ⊆ 𝐷(𝑇 ) × 𝐷(𝑆)) such that

(fold𝑇(𝑥), fold𝑆(𝑦)) ∈ 𝑅⊲
𝐷(𝑇 ⊲ 𝑆)

⇔ (𝑥, 𝑦) ∈ 𝐹⊲
𝑅 (𝑅

⊲
𝐷, 𝑅

⊲
𝐷)(𝑇 ⊲ 𝑆)

which we take as the definition of the error approximation
relations of Figure 19.

Having defined error approximation, we are ready to prove
the gradual guarantees. We begin with a few auxiliary results
that show that loosening the labels in a program does not
interfere with subtyping or joins.

Lemma A.10 (Dynamism and subtyping). If ̄𝑙1 ⊲ ̄𝑙2, then
̄𝑙1 ≼ ̄𝑙 implies ̄𝑙2 ≼ ̄𝑙 and ̄𝑙 ≼ ̄𝑙1 implies ̄𝑙 ≼ ̄𝑙2. If 𝑇1 ⊲ 𝑇2, then

𝑇1 ≼ 𝑆 implies 𝑇2 ≼ 𝑆 and 𝑆 ≼ 𝑇1 implies 𝑆 ≼ 𝑇2. In particular,
since all relations are reflexive, ⊲ and ⊳ are contained in ≼.

In light of this lemma, we will write ⟦𝑇 ⊲ 𝑆⟧ (or ⟦𝑇 ⊳ 𝑆⟧)
instead of ⟦𝑇 ≼ 𝑆⟧ when 𝑇 ⊲ 𝑆 (or 𝑇 ⊳ 𝑆) holds. We will
adopt a similar convention for label casts.
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̂𝐹⊲
𝑅 (𝑅

−, 𝑅+)(𝑇 ⊲ 𝑇) ≜ {(𝑥, 𝑥) ∈ 𝑋(𝑇 ) × 𝑋(𝑇 )}
(𝑇 = Unit,Bool, Label)

̂𝐹⊲
𝑅 (𝑅

−, 𝑅+)(Ref ̄𝑙(𝑇 ) ⊲ Ref ̄𝑙′(𝑇
′)) ≜ {(𝑥, 𝑥) ∣ 𝑥 ∈ 𝑋(Ref ̄𝑙(𝑇 ))}

̂𝐹⊲
𝑅 (𝑅

−, 𝑅+)(Lab ̄𝑙(𝑇 ) ⊲ Lab ̄𝑙′(𝑇
′)) ≜ {(𝑥@𝑙, 𝑥′@𝑙) ∣ (𝑥, 𝑥′) ∈ 𝑅+(𝑇 ⊲ 𝑇 ′)}

̂𝐹⊲
𝑅 (𝑅

−, 𝑅+)(𝑇1
̄𝑙1, ̄𝑙2−−−→ 𝑇2 ⊲ 𝑇 ′

1
̄𝑙′1, ̄𝑙′2−−−→ 𝑇 ′

2 ) ≜ {(𝑓 , 𝑓 ′) ∣ ∀(𝑥1, 𝑥′
1) ∈ 𝑅−(𝑇1 ⊲ 𝑇 ′

1 ), (𝑚1, 𝑚′
1) ∈ 𝐺⊲

Mem(𝑅−), 𝑙1.
(𝑓 (𝑥1)(𝑚1, 𝑙1) = ⊥ ⇒ 𝑓 ′(𝑥′

1)(𝑚′
1, 𝑙1) = ⊥)

∧ ∀𝑥2, 𝑚2, 𝑙2. 𝑓 (𝑥1)(𝑚1, 𝑙1) = (𝑚2, 𝑥2, 𝑙2) ⇒
∃𝑥′

2, 𝑚′
2. 𝑓 ′(𝑥′

1)(𝑚′
1, 𝑙1) = (𝑚′

2, 𝑥′
2, 𝑙2)

∧ (𝑥2, 𝑥′
2) ∈ 𝑅+(𝑇2 ⊲ 𝑇 ′

2 ) ∧ (𝑚2, 𝑚′
2) ∈ 𝐺⊲

Mem(𝑅+)}
𝐺⊲

Mem(𝑅) ≜ {(𝑚1, 𝑚2) ∣ dom(𝑚1) = dom(𝑚2)
∧ ∀(𝑇 , 𝑟) ∈ dom(𝑚1).(𝑚1(𝑇 , 𝑟), 𝑚2(𝑇 , 𝑟)) ∈ 𝑅(𝑇 ⊲ 𝑇)}

Figure 24. Lifting of the functor 𝐹 for error approximation. The clause for Ref assumes that 𝑋(Ref ̄𝑙(𝑇 )) ⊆ 𝑋(Ref ̄𝑙′(𝑇
′)) when

̄𝑙 ⊲ ̄𝑙′. Strictly speaking, this is not valid for the entire domain of definition of the functor 𝐹, but we can show that 𝐹 does
preserve this property, so there is no harm in assuming it holds.

Lemma A.11 (Dynamism, joins and meets). Let ⊕ ∈ {⋎, ⋏}.
If ̄𝑙1 ⊲ ̄𝑙′1 and ̄𝑙2 ⊲ ̄𝑙′2, then ̄𝑙1⊕ ̄𝑙2 ⊲ ̄𝑙′1⊕ ̄𝑙′2. If 𝑇 ⊲ 𝑇 ′, 𝑆 ⊲ 𝑆′, and
𝑇 ⊕𝑆 is well-defined, then so is 𝑇 ′⊕𝑆′; moreover, 𝑇 ⊕𝑆 ⊲ 𝑇 ′⊕𝑆′.

Lemma A.12. If ̄𝑙 ⊲ ̄𝑙′, then 𝛾( ̄𝑙) ⊆ 𝛾( ̄𝑙′) and ↓ ̄𝑙 ⊆ ↓ ̄𝑙′.

Theorem 6.2 (Static Gradual Guarantee). If Γ ⊲ Γ′, ̄𝑙1 ⊲ ̄𝑙′1,
𝑒 ⊲ 𝑒′, and Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇, there exist ̄𝑙′2 ⊳ ̄𝑙2 and 𝑇 ′ ⊳ 𝑇 such
that Γ′ ⊢ ̄𝑙′1, ̄𝑙′2 𝑒′ ∶ 𝑇 ′.

Proof. By induction on the typing derivation, using Lem-
mas A.10 to A.12. �

Next, we cover a few properties of the error approximation
relation.

Lemma A.13. 1. ∅ ⊲ ∅
2. If 𝑚1 ⊲ 𝑚′

1 and 𝑚2 ⊲ 𝑚′
2, then 𝑚1 ⊎⃗ 𝑚2 ⊲ 𝑚′

1 ⊎⃗ 𝑚′
2.

3. If 𝑇 ⊲ 𝑆 and 𝑥 ⊲ 𝑦 ∶ 𝑇 ⊲ 𝑆, then [𝑇 ∘, 𝑟 ↦ 𝑥] ⊲
[𝑆∘, 𝑟 ↦ 𝑦].

Lemma A.14. If ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 for 𝑖 ∈ {1, 2, 3}, 𝑇 ⊲ 𝑇 ′ and 𝑆 ⊲ 𝑆′,
then

1. return ̄𝑙1,⟦𝑇 ⟧ ⊲ return ̄𝑙′1,⟦𝑇 ′⟧
2. bind ̄𝑙1, ̄𝑙2, ̄𝑙3,⟦𝑇 ⟧,⟦𝑆⟧ ⊲ bind ̄𝑙′1, ̄𝑙′2, ̄𝑙′3,⟦𝑇 ′⟧,⟦𝑆′⟧

Proof. For return, suppose that we have values 𝑣 ⊲ 𝑣′, mem-
ories 𝑚 ⊲ 𝑚′ and a label 𝑙. We must show that ∅ ⊲ ∅ (trivial)
and 𝑣 ⊲ 𝑣′ (which follows from the assumption).

For bind, suppose that we have computations

𝑓1 ⊲ 𝑓2 ∶ LIO ̄𝑙1, ̄𝑙2(⟦𝑇⟧) ⊲ LIO ̄𝑙′1, ̄𝑙′2(⟦𝑇
′⟧),

functions

𝑔1 ⊲ 𝑔2 ∶ ⟦𝑇⟧
cont
−−−−→ LIO ̄𝑙2, ̄𝑙3(⟦𝑆⟧) ⊲ ⟦𝑇 ′⟧

cont
−−−−→ LIO ̄𝑙′2, ̄𝑙′3(⟦𝑆

′⟧),

memories 𝑚1 ⊲ 𝑚2, and a label 𝑙. We must show that

bind(𝑓1, 𝑔1)(𝑚1, 𝑙) ⊲ bind(𝑓2, 𝑔2)(𝑚2, 𝑙).

First, suppose that bind(𝑓1, 𝑔1)(𝑚1, 𝑙) = ⊥. There are two
cases to consider. If 𝑓1(𝑚1, 𝑙) = ⊥, we have 𝑓2(𝑚2, 𝑙) = ⊥ by
the assumption on the 𝑓𝑖, and thus bind(𝑓2, 𝑔2)(𝑚2, 𝑙) also
diverges. Otherwise, it must be the case that there exist 𝑚′

1,
𝑥1 and 𝑙′ such that 𝑓1(𝑚1, 𝑙) = (𝑚′

1, 𝑥1, 𝑙′) and 𝑔1(𝑥1)(𝑚1 ⊎⃗
𝑚′

1, 𝑙′1) = ⊥. By the hypothesis on the 𝑓𝑖, we find 𝑚′
2 and

𝑥2 such that 𝑓2(𝑚2, 𝑙) = (𝑚′
2, 𝑥2, 𝑙′), 𝑚′

1 ⊲ 𝑚′
2 and 𝑥1 ⊲ 𝑥′

2.
By Lemma A.13, we find that 𝑚1 ⊎⃗ 𝑚′

1 ⊲ 𝑚2 ⊎⃗ 𝑚′
2. By the

hypothesis on 𝑔𝑖, we find that 𝑔2(𝑥2)(𝑚2 ⊎⃗𝑚′
2, 𝑙′) = ⊥, which

concludes this case.
Now, suppose that bind(𝑓1, 𝑔1)(𝑚1, 𝑙) = (𝑚‴

1 , 𝑥′
1, 𝑙″). By

the definition of bind, we find 𝑚′
1, 𝑥1, 𝑙′ and 𝑚″

1 such that

𝑓1(𝑚1, 𝑙) = (𝑚′
1, 𝑥1, 𝑙′) 𝑔1(𝑥1)(𝑚1 ⊎⃗ 𝑚′

1, 𝑙′) = (𝑚″
1 , 𝑥′

1, 𝑙″)

𝑚‴
1 = 𝑚′

1 ⊎⃗ 𝑚″
1 .

Once again, the hypothesis on the 𝑓𝑖 and 𝑔𝑖 combined with
Lemma A.13 allow us to find 𝑚′

2 ⊳ 𝑚′
1, 𝑥2 ⊳ 𝑥1, 𝑚″

2 ⊳ 𝑚″
1

and 𝑥′
2 ⊳ 𝑥′

1 such that

𝑓2(𝑚2, 𝑙) = (𝑚′
2, 𝑥2, 𝑙′) 𝑔2(𝑥2)(𝑚2 ⊎⃗ 𝑚′

2, 𝑙′) = (𝑚″
2 , 𝑥′

2, 𝑙″),

which allows us to conclude. �

Lemma A.15. Suppose we have gradual labels ̄𝑙1, ̄𝑙′1, ̄𝑙2 and
̄𝑙′2 such that ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 for all 𝑖 ∈ {1, 2} and ̄𝑙1 ≼ ̄𝑙2 (and thus ̄𝑙′1 ≼ ̄𝑙′2
by Lemma A.10). Then ⟦ ̄𝑙1 ≼ ̄𝑙2⟧ ⊲ ⟦ ̄𝑙′1 ≼ ̄𝑙′2⟧.

Proof. Suppose that we are given a label 𝑙1 ∈ ↓ ̄𝑙1 ⊆ ↓ ̄𝑙′1 and
two memories 𝑚 ⊲ 𝑚′. If 𝑙1 ∉ ↓ ̄𝑙2, we have ⟦ ̄𝑙1 ≼ ̄𝑙2⟧(𝑚, 𝑙1) =
error, and the result is trivial. Otherwise, we find 𝑙1 ∈ ↓ ̄𝑙2 ⊆
↓ ̄𝑙′2, and we can conclude because both executions result in
(∅, 1, 𝑙1). �



Reconciling noninterference and gradual typing

Lemma A.16. Suppose that we have gradual types 𝑇1, 𝑇 ′
1 , 𝑇2

and 𝑇 ′
2 such that 𝑇𝑖 ⊲ 𝑇 ′

𝑖 for all 𝑖 ∈ {1, 2} and 𝑇1 ≼ 𝑇2 (and
thus 𝑇 ′

1 ≼ 𝑇 ′
2 by Lemma A.10). Then ⟦𝑇1 ≼ 𝑇2⟧ ⊲ ⟦𝑇 ′

1 ≼ 𝑇 ′
2⟧.

Proof. By unfolding definitions, we must show that related
values are mapped to related results. We proceed by induc-
tion on 𝑇1 and inversion on the derivations relating the
types. The cases of Unit, Bool and Label are trivial, since
they reduce to return. The case of function types follows
by composition, the induction hypotheses, and by applying
Lemma A.15.

It remains to show the result for 𝑇1 = Ref ̄𝑙1(𝑆1) and 𝑇1 =
Lab ̄𝑙1(𝑆1). We focus on the second case, since the first one is
similar. The remaining types are of the form

𝑇 ′
1 = Lab ̄𝑙′1(𝑆

′
1) 𝑇2 = Lab ̄𝑙2(𝑆2) 𝑇 ′

2 = Lab ̄𝑙′2(𝑆
′
2),

with 𝑆1 ⊲ 𝑆′1, 𝑆2 ⊲ 𝑆′2, ̄𝑙1 ⊲ ̄𝑙′1 and ̄𝑙2 ⊲ ̄𝑙′2. Suppose that we are
given related labeled values 𝑣1@𝑙1 ⊲ 𝑣′1@𝑙1 ∶ Lab ̄𝑙1(⟦𝑆1⟧) ⊲
Lab ̄𝑙′1(⟦𝑆

′
1⟧). If 𝑙1 ∉ ↓ ̄𝑙2, we have ⟦𝑇1 ≼ 𝑇2⟧(𝑣1@𝑙1) = 𝜆(−). error,

and the result is trivial. Otherwise, we have 𝑙1 ∈ ↓ ̄𝑙2 ⊆ ↓ ̄𝑙′2,
which implies

⟦𝑇1 ≼ 𝑇2⟧(𝑣1@𝑙1) = do { 𝑣2 ← ⟦𝑆1 ≼ 𝑆2⟧(𝑣1);
return(𝑣2@𝑙1)

⟦𝑇 ′
1 ≼ 𝑇 ′

2⟧(𝑣′1@𝑙1) = do { 𝑣′2 ← ⟦𝑆′1 ≼ 𝑆′2⟧(𝑣′1);
return(𝑣′2@𝑙1).

We conclude by composition, applying the induction hypoth-
esis on 𝑆1, 𝑆2, 𝑆′1 and 𝑆′2. �

Corollary A.17. If 𝑇1 ⊲ 𝑇 ′
1 and 𝑇2 ⊲ 𝑇 ′

2 , then ⟦𝑇1 ∶ 𝑇2⟧ ⊲
⟦𝑇 ′

1 ∶ 𝑇 ′
2⟧.

Proof. If 𝑇1 ≼ 𝑇2, then 𝑇 ′
1 ≼ 𝑇 ′

2 by Lemma A.10, and the
result is equivalent to ⟦𝑇1 ≼ 𝑇2⟧ ⊲ ⟦𝑇 ′

1 ≼ 𝑇 ′
2⟧, which follows

from Lemma A.16. Otherwise, ⟦𝑇1 ∶ 𝑇2⟧ = 𝜆(−). error, and
the result is trivial. �

Lemma A.18. Each primitive 𝑓 of Figure 14 satisfies 𝑓 ⊲ 𝑓
(given suitable parameters).

Proof. By “given suitable parameters,” we mean that each
primitive is parameterized by CPOs and labels, and we must
choose the parameters correctly for each side of the above
relation for it to hold. This means that the labels on the
left-hand side must be less dynamic than those on the right-
hand side. We provide more precise statements for each case
below.

Case unlabel. We want to show unlabel ̄𝑙1, ̄𝑙2 ⊲ unlabel ̄𝑙′1, ̄𝑙′2
when ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 for all 𝑖. Suppose that we have a label 𝑙1 ∈ ↓ ̄𝑙1 ⊆
↓ ̄𝑙′1, labeled values 𝑣@𝑙2 ⊲ 𝑣′@𝑙′2 and memories 𝑚1 ⊲ 𝑚′

1.
By definition, we have 𝑙2 = 𝑙′2 and 𝑣 ⊲ 𝑣′, and the results of
executing unlabel are (∅, 𝑣, 𝑙1 ⋎ 𝑙2) and (∅, 𝑣′, 𝑙1 ⋎ 𝑙2). Thus,
we have to show ∅ ⊲ ∅ (trivial) and 𝑣 ⊲ 𝑣′, which follows
from the assumption.

Case get. Given ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 for all 𝑖 ∈ {1, 2} and 𝑇 ⊲ 𝑇 ′ we must
show

get ̄𝑙1, ̄𝑙2,𝑇
⊲ get ̄𝑙′1, ̄𝑙′2,𝑇 ′

∶ Ref ̄𝑙2
cont
−−−−→ LIO ̄𝑙1, ̄𝑙1⋎ ̄𝑙2⟦𝑇

∘⟧ ⊲ Ref ̄𝑙′2
cont
−−−−→ LIO ̄𝑙′1, ̄𝑙′1⋎ ̄𝑙′2⟦𝑇

∘⟧.

(Recall that (𝑇 ′)∘ = 𝑇 ∘; cf. Lemma A.1.)
Suppose that we are given a label 𝑙1 ∈ ↓ ̄𝑙1 ⊆ ↓ ̄𝑙′1, along

elements

𝑟 ⊲ 𝑟 ∶ Ref ̄𝑙2 ⊲ Ref ̄𝑙′2 𝑚1 ⊲ 𝑚′
1 ∶ Mem ⊲ Mem .

If (𝑇 ∘, 𝑟) ∉ dom(𝑚1) = dom(𝑚2), both executions return
error and the result is trivial. Otherwise, (𝑇 ∘, 𝑟) ∈ dom(𝑚1) =
dom(𝑚2), and the executions return

(∅,𝑚1(𝑇 ∘, 𝑟), 𝑙1 ⋎ 𝑟label) and (∅,𝑚′
1(𝑇 ∘, 𝑟), 𝑙1 ⋎ 𝑟label).

We conclude using 𝑚1(𝑇 ∘, 𝑟) ⊲ 𝑚′
1(𝑇 ∘, 𝑟), a consequence of

𝑚1 ⊲ 𝑚2.

Case set. Given ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 for 𝑖 ∈ {1, 2} and 𝑇 ⊲ 𝑇 ′, we have
to show that

set ̄𝑙1, ̄𝑙2,𝑇 ⊲ set ̄𝑙′1, ̄𝑙′2,𝑇 ′

∶ Ref ̄𝑙1 ×⟦𝑇
∘⟧

cont
−−−−→ LIO ̄𝑙2, ̄𝑙2(1) ⊲ Ref ̄𝑙′1 ×⟦𝑇

∘⟧
cont
−−−−→ LIO ̄𝑙′2, ̄𝑙′2(1),

(As in the get case, 𝑇 does not have to vary.)
Suppose we are given a label 𝑙1 ∈ ↓ ̄𝑙1 ⊆ ↓ ̄𝑙′1 along elements

𝑟 ⊲ 𝑟 ∶ Ref ̄𝑙2 ⊲ Ref ̄𝑙′2 𝑣 ⊲ 𝑣′ ∶ ⟦𝑇 ∘⟧ ⊲ ⟦𝑇 ∘⟧

𝑚1 ⊲ 𝑚′
1 ∶ Mem ⊲ Mem .

Suppose that (𝑇 ∘, 𝑟) ∈ dom(𝑚1) = dom(𝑚′
1) and 𝑙1 ≼ 𝑟label,

otherwise the result follows because

set(𝑟 , 𝑣)(𝑚1, 𝑙1) = set(𝑟 , 𝑣′)(𝑚′
1, 𝑙1) = error .

By unfolding the definition of set, wemust show that [𝑇 ∘, 𝑟 ↦
𝑣] ⊲ [𝑇 ∘, 𝑟 ↦ 𝑣′] (follows by Lemma A.13) and 1 ⊲ 1 (triv-
ial).

Case new. We must show that new ̄𝑙1, ̄𝑙2,𝑇 ⊲ new ̄𝑙′1, ̄𝑙′2,𝑇 ′ at the
CPOs

𝛾( ̄𝑙1) × ⟦𝑇 ∘⟧
cont
−−−−→ LIO ̄𝑙2, ̄𝑙2(Ref ̄𝑙1)

⊲ 𝛾( ̄𝑙′1) × ⟦𝑇 ∘⟧
cont
−−−−→ LIO ̄𝑙′2, ̄𝑙′2(Ref ̄𝑙′1)

when ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 for every 𝑖 and 𝑇 ⊲ 𝑇 ′. (As in the get case, 𝑇
does not need to vary.)

Suppose we are given 𝑣 ⊲ 𝑣′ ∶ ⟦𝑇 ∘⟧ ⊲ ⟦𝑇 ∘⟧, 𝑙𝑖 ∈ ↓ ̄𝑙𝑖 ⊆ ↓ ̄𝑙′𝑖
(𝑖 ∈ {1, 2}) and memories 𝑚1 ⊲ 𝑚′

1. We have to show that
new(𝑙1, 𝑣)(𝑚1, 𝑙2) ⊲ new(𝑙1, 𝑣′)(𝑚′

1, 𝑙2). Suppose that 𝑙2 ≼ 𝑙1,
otherwise both terms are equal to error and the result is
trivial. In this case, since dom(𝑚1) = dom(𝑚′

1), the results
are of the form ([𝑇 ∘, 𝑟 ↦ 𝑣], 𝑟 , 𝑙2) and ([𝑇 ∘, 𝑟 ↦ 𝑣′], 𝑟 , 𝑙2)
for some reference 𝑟, and we can conclude.
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Case toLab. We want to show

toLab ̄𝑙1, ̄𝑙2, ̄𝑙3,⟦𝑇 ⟧ ⊲ toLab ̄𝑙′1, ̄𝑙′2, ̄𝑙′3,⟦𝑇 ′⟧

whenever ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 for every 𝑖 and 𝑇 ⊲ 𝑇 ′. Suppose that we
have labels 𝑙1 ∈ 𝛾( ̄𝑙1) ⊆ 𝛾( ̄𝑙′1), 𝑙2 ∈ ↓ ̄𝑙2 ⊆ ↓ ̄𝑙′2 and

𝑓 ⊲ 𝑓 ′ ∶ LIO ̄𝑙2, ̄𝑙3(𝑋) ⊲ LIO ̄𝑙′2, ̄𝑙′3(𝑋
′)

𝑚1 ⊲ 𝑚′
1 ∶ Mem ⊲ Mem .

There are the following cases to consider.
1. If toLab(𝑙1, 𝑓 )(𝑚1, 𝑙2) = ⊥, we know that 𝑓 (𝑚1, 𝑙2) = ⊥.

This implies toLab(𝑙1, 𝑓 ′)(𝑚′
1, 𝑙2) = 𝑓 ′(𝑚′

1, 𝑙2) = ⊥ by
the above hypothesis, and the conclusion follows.

2. If toLab(𝑙1, 𝑓 )(𝑚1, 𝑙2) = error, the relation reduces to
error ⊲ toLab(𝑙1, 𝑓 ′)(𝑚′

1, 𝑙2), which also holds trivially.
3. Otherwise, toLab(𝑙1, 𝑓 )(𝑚1, 𝑙2) must be of the form

(𝑚2, 𝑣2@𝑙1, 𝑙2), with 𝑓 (𝑚1, 𝑙2) = (𝑚2, 𝑣2, 𝑙3) and 𝑙3 ≼
𝑙1 ⋎ 𝑙2. Since 𝑓 ⊲ 𝑓 ′, it must be the case that 𝑓 (𝑚′

1, 𝑙2) =
(𝑚′

2, 𝑣′2, 𝑙3) with 𝑚2 ⊲ 𝑚′
2 and 𝑣2 ⊲ 𝑣′2. We conclude

that toLab(𝑙1, 𝑓 ′)(𝑚′
1, 𝑙2) = (𝑚′

2, 𝑣′2@𝑙1, 𝑙2), which im-
plies the final result.

�

Lemma A.19 (Unique Typing). If Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇 and Γ ⊢ ̄𝑙1, ̄𝑙′2
𝑒 ∶ 𝑇 ′, then ̄𝑙2 = ̄𝑙′2 and 𝑇 = 𝑇 ′.

Proof. By induction on 𝑒 and inversion on the typing deriva-
tions. �

Theorem 6.3 (Dynamic Gradual Guarantee, General). If
Γ ⊢ ̄𝑙1, ̄𝑙2 𝑒 ∶ 𝑇, Γ′ ⊢ ̄𝑙′1, ̄𝑙′2 𝑒′ ∶ 𝑇 ′, Γ ⊲ Γ′, ̄𝑙𝑖 ⊲ ̄𝑙′𝑖 (∀𝑖 ∈ {1, 2}),

𝑒 ⊲ 𝑒′ and 𝑇 ⊲ 𝑇 ′, then ⟦𝑒⟧ ⊲ ⟦𝑒′⟧ ∶ ⟦Γ⟧
cont
−−−−→ LIO ̄𝑙1, ̄𝑙2(⟦𝑇⟧) ⊲

⟦Γ′⟧
cont
−−−−→ LIO ̄𝑙′1, ̄𝑙′2(⟦𝑇

′⟧).

Proof. By Theorem 6.2 and Lemma A.19, the typing deriva-
tion of 𝑒′ is entirely determined by that of 𝑒, plus Γ′ and ̄𝑙′1.
We proceed by induction on the derivation of 𝑒 and inver-
sion on the derivation of 𝑒′ for each case. Most cases follow
by composition, induction hypotheses, and the results of
Lemma A.18; we detail the interesting ones here.

Case pcLabel. Trivial: the results depend only on the PC
label, which is the same on both sides.

Case fun. We have 𝑒 = fun(𝑥 ∶ ̄𝑙 𝑆.𝑒1) and 𝑒′ = fun(𝑥 ∶ ̄𝑙′
𝑆′.𝑒′1) with ̄𝑙 ⊲ ̄𝑙′, 𝑆 ⊲ 𝑆′ and 𝑒1 ⊲ 𝑒′1. By the induction hy-
pothesis, we know that ⟦𝑒1⟧ ⊲ ⟦𝑒′1⟧, implying that ⟦𝑒1⟧(𝑠[𝑥 ↦
𝑣]) ⊲ ⟦𝑒′1⟧(𝑠′[𝑥 ↦ 𝑣′]) for all environments 𝑠 ⊲ 𝑠′ and
arguments 𝑣 ⊲ 𝑣′. By definition, 𝜆𝑣.⟦𝑒1⟧(𝑠[𝑥 ↦ 𝑣]) ⊲
𝜆𝑣.⟦𝑒′1⟧(𝑠′[𝑥 ↦ 𝑣′]), hence ⟦𝑒⟧(𝑠) ⊲ ⟦𝑒′⟧(𝑠′), concluding
this case.

Case app. We have 𝑒 = 𝑒′ = app(𝑓 , 𝑥), with

Γ(𝑓 ) ∶ 𝑆1
̄𝑙3, ̄𝑙2−−−→ 𝑇 Γ(𝑥) ∶ 𝑆2

Γ′(𝑓 ) ∶ 𝑆′1
̄𝑙′3, ̄𝑙′2−−−→ 𝑇 ′ Γ(𝑥) ∶ 𝑆′2,

such that ̄𝑙3 ⊲ ̄𝑙′3, 𝑆1 ⊲ 𝑆′1, 𝑆2 ⊲ 𝑆′2, 𝑆2 ≼ 𝑆1 and 𝑆′2 ≼ 𝑆′1.
Given environments 𝑠 ⊲ 𝑠′, after performing the appropriate
checks, it suffices to show that 𝑠(𝑓 )(𝑣) ⊲ 𝑠′(𝑓 )(𝑣′) for 𝑣 ⊲ 𝑣′.
This follows from the definition of error approximation for
environments and for functions. �
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