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What if we could
redesign computers for

security?
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Clean-slate redesign of entire system stack

http://www.crash-safe.org
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The SAFE Project

� Support for critical security primitives from hardware
to application levels

� Memory safety

� Strong dynamic typing

� Dynamic information flow and access control

� Design of key components informed by verification
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SAFE Architecture

� Integrate well-known mechanisms for security (e.g.
fat-pointers, type tags, . . . )

� Focus of this paper: flexible mechanism for
supporting information-flow control (IFC) using a
hardware cache and tags

tagpayload
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Our Goal

Formalize and verify the core IFC mechanism proposed
by SAFE using the Coq proof assistant
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Information-Flow Control
(IFC)

Track and limit information dependency in computations

Noninterference (NI): Varying secret inputs does not
affect public observations
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Abstract Machine NI Easier to show

Concrete Machine

NI

Preserved

How can we
prove it?

IFC baked into
semantics

Refined by

Core model of SAFE

Relies on determinism
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Our Contributions

Using Coq, we

� Model the core mechanism for supporting IFC in
SAFE (our so-called “concrete machine”)

� Develop a proof methodology (by refinement) for
proving this mechanism correct
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Information-Flow
Model
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Abstract Machine NI

Concrete Machine NI

Refined by
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Simple Abstract Machine

Stack machine with
output channel, operating
on integers

Input/output model:

� The input of a program
is its initial stack

� The result of executing
a program is the
sequence of its
outputs

1

5

8
output

stack
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IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC PC PC PC

1@L

5@L

8@H
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IFC in Hardware
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Abstract Machine NI

Concrete Machine NI

Refined by
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Concrete Machine
Similar to previous one,
but with hardware
mechanisms for supporting
IFC

Cache

1@0

5@0

8@1
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Concrete Machine
Plain integer tags instead
of high-level IFC labels

Uninterpreted in hardware

Cache

1@0

5@0

8@1
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Concrete Machine

Hardware cache governs
tag propagation

Cache

1@0

5@0

8@1
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Concrete Machine
Cache line relates
combination of instruction
and operand tags to result
tag

Cache

Add 0 0 0

opcode
op1 op2

result

1@0

5@0

8@1
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Cache Operation

1@0

5@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler
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Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode

It can modify the cache, as well as
bypass itIt analyzes the fault context

......!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction
Cache look-up will then succeed,
allowing code to continue

Add 0 1 ?

Cache6@0
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Proving the Refinement
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Abstract Machine NI

Concrete Machine NI

Refined by
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Refinement Structure

a1

c1

Concrete

Abstract

labels correctly rep-
resented, cache com-
patible with IFC rules,
machine in user mode

. . .
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Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

machine runs,
producing output
trace
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Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

want corresponding abstract trace

combine two execution lemmas

ta
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Refinement Structure
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Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

a2oa

p1 pk c3. . .
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Refinement Structure
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Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
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p1 pk c3. . .

. . . and returns to user code
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Refinement Structure
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Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

a2oa

p1 pk c3. . .

proceed
inductively
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Challenges

Interesting issues involved in these proofs

� Verification of machine code is difficult

� Need to formalize notion of compatibility between
cache and IFC rules

� How to make it work for any IFC lattice?
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Idea: Structure proof
and implementation

with another refinement
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Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine Fault Handler

Refined by
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Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine Fault Handler

Refined by

Refined by

Provide formulation of
cache compatibility

25



Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine

Refined by

Refined by

Fault Handler

Correctly
compiled to

25



Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine

Refined by

Fault Handler

Correctly
compiled toRefined by

Combine hit and miss
simulation lemmas
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Symbolic Rule Table

Instruction Result Label
Add LAB1tLAB2

Output LAB1
...

...

if the current instruction is
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Symbolic Rule Table

Instruction Result Label
Add LAB1tLAB2

Output LAB1
...

...

label the result with
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Symbolic Rule Table

Instruction Result Label
Add LAB1tLAB2

Output LAB1
...

...

for Add, result is as secret as operands
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Symbolic Rule Table

Instruction Result Label
Add LAB1tLAB2

Output LAB1
...

...

for Output, use same label
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Handler
Implementation and

Verification
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Structured-Code
Generators

Structured programming instead of assembly
programming

� Define structured-code generators as Coq functions

� Generators provide a structured language for the
machine (if, case, and, or, while, . . . )

� Prove Hoare-logic rules for each generator
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Compiling IFC Rules

Write a rule table compiler in Coq

� Use generators as a backend

� Parameterized over correct implementation of lattice
primitives

� Compose Hoare triples to show compiler correctness
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Algorithm

� Fetch instruction and operand tags from faulting
context

� Compute the result tag from this data using
compiled rule table

� Install computed line into the cache

Proven correct by composing compiler lemma with
triples for the glue code
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Abstract Machine NI

Symbolic-Rule Machine IFC Rules

IFC side-
conditions
symbolically
represented
by

Concrete Machine Fault Handler NI

Refined by

Refined by Correctly compiled to

Preserved
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Abstract Machine NI

Symbolic-Rule Machine IFC Rules

IFC side-
conditions
symbolically
represented
by

Concrete Machine Fault Handler

Refined by

Refined by Correctly compiled to

NI

Preserved
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What Else?
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More in the Paper

Complete model includes more features

� Control flow and user-level procedures

� Block-structured memory with dynamic allocation

� System calls for implementing new IFC primitives

� Richer IFC labels (sets of principals represented as
pointers to memory arrays)
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Addressed Challenges

� Track implicit flows

� Allocation and noninterference

� Pointer values could leak secrets

� Label representation depending on machine state

� Low-level code for array manipulation and
corresponding proofs
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Wrapping Up
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Conclusions

� Described a hardware mechanism for dynamic
tag-checking and propagation

� Proof architecture for connecting it to high-level
property

� Refinement provides structure to proof

� Everything formalized in Coq
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Coq Development

Entire formalization available at www.crash-safe.org

Complete machine and corresponding proofs in
approximately 15k LOC
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Future Work
� More interesting IFC features (concurrency,

declassification, dynamic principal generation, . . . )

� Make model more realistic

� Incorporate more features of SAFE

� Study tag cache in the context of conventional
architectures

� Mechanism is not IFC-specific, investigate other
applications.
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Thank You!

Questions?
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