
A Verified
Information-Flow

Architecture
Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine
Demange, Cătălin Hri̧tcu, David Pichardie, Benjamin Pierce, Randy

Pollack, Andrew Tolmach

January 2014

1

What if we could
redesign computers for

security?

2

Clean-slate redesign of entire system stack

http://www.crash-safe.org

3

The SAFE Project

� Support for critical security primitives from hardware
to application levels

� Memory safety

� Strong dynamic typing

� Dynamic information flow and access control

� Design of key components informed by verification

4

SAFE Architecture

� Integrate well-known mechanisms for security (e.g.
fat-pointers, type tags, . . .)

� Focus of this paper: flexible mechanism for
supporting information-flow control (IFC) using a
hardware cache and tags

tagpayload

5

Our Goal

Formalize and verify the core IFC mechanism proposed
by SAFE using the Coq proof assistant

6

Information-Flow Control
(IFC)

Track and limit information dependency in computations

Noninterference (NI): Varying secret inputs does not
affect public observations

7

H L

1@L

0@H

1@L 0@H

1,0 1

1@L

42@H 1@L 42@H

1,42 1

8

H L

1@L

0@H

1@L 0@H

1,0 1

1@L

42@H 1@L 42@H

1,42 1

8

H L

1@L

0@H 1@L 0@H

1,0 1

1@L

42@H 1@L 42@H

1,42 1

8

H L

1@L

0@H 1@L 0@H

1,0 1

1@L

42@H 1@L 42@H

1,42 1

8

H L

1@L

0@H 1@L 0@H

1,0 1

1@L

42@H

1@L 42@H

1,42 1

8

H L

1@L

0@H 1@L 0@H

1,0 1

1@L

42@H 1@L 42@H

1,42 1

8

H L

1@L

0@H 1@L 0@H

1,0 1

1@L

42@H 1@L 42@H

1,42 1

8

Abstract Machine NI Easier to show

Concrete Machine

NI

Preserved

How can we
prove it?

IFC baked into
semantics

Refined by

Core model of SAFE

Relies on determinism

9

Abstract Machine NI Easier to show

Concrete Machine

NI

Preserved

NI

How can we
prove it?

IFC baked into
semantics

Refined by

Core model of SAFE

Relies on determinism

9

Abstract Machine NI Easier to show

Concrete Machine

NI

Preserved

NI How can we
prove it?

IFC baked into
semantics

Refined by

Core model of SAFE

Relies on determinism

9

Abstract Machine

NI Easier to show

Concrete Machine

NI

Preserved

NI

How can we
prove it?

IFC baked into
semantics

Refined by

Core model of SAFE

Relies on determinism

9

Abstract Machine NI Easier to show

Concrete Machine

NI

Preserved

NI

How can we
prove it?

IFC baked into
semantics

Refined by

Core model of SAFE

Relies on determinism

9

Abstract Machine NI

Easier to show

Concrete Machine NI

Preserved

NI

How can we
prove it?

IFC baked into
semantics

Refined by

Core model of SAFE

Relies on determinism

9

Abstract Machine NI

Easier to show

Concrete Machine NI

Preserved

NI

How can we
prove it?

IFC baked into
semantics

Refined by

Core model of SAFE

Relies on determinism

9

Our Contributions

Using Coq, we

� Model the core mechanism for supporting IFC in
SAFE (our so-called “concrete machine”)

� Develop a proof methodology (by refinement) for
proving this mechanism correct

10

Information-Flow
Model

11

Abstract Machine NI

Concrete Machine NI

Refined by

12

Simple Abstract Machine

Stack machine with
output channel, operating
on integers

Input/output model:

� The input of a program
is its initial stack

� The result of executing
a program is the
sequence of its
outputs

1

5

8
output

stack

13

Simple Abstract Machine

Stack machine with
output channel, operating
on integers

Input/output model:

� The input of a program
is its initial stack

� The result of executing
a program is the
sequence of its
outputs

1

5

8

output

stack

13

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC PC PC PC

1@L

5@L

8@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC PC PC PC

1@L

5@L

8@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC

PC PC PC

1@L

5@L

8@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC

PC PC PC

1@L

5@L

8@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC

PC PC PC

1@L

6@L

8@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC

PC

PC PC

1@L

6@L

8@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC

PC

PC PC

1@L

6@L

8@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC

PC

PC PC

1@L

14@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC PC

PC

PC

1@L

14@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC PC

PC

PC

1@L

14@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC PC

PC

PC

1@L

14@H

14

IFC Abstract Machine

Label data with security
levels

H = high security
L = low security

(or, more generally, any
IFC lattice)

Machine has semantics
with standard dynamic IFC
baked-in

Mechanizing proof of NI is
relatively straightforward

When low-security
operands are combined,
the result is low-security

When one operand is high-
security, result is high-
security

Labels on outputs mark
who is able to see them

· · · Add Add Output · · ·

PC PC PC

PC

1@L

14@H

14

IFC in Hardware

15

Abstract Machine NI

Concrete Machine NI

Refined by

16

Concrete Machine
Similar to previous one,
but with hardware
mechanisms for supporting
IFC

Cache

1@0

5@0

8@1

17

Concrete Machine
Plain integer tags instead
of high-level IFC labels

Uninterpreted in hardware

Cache

1@0

5@0

8@1

17

Concrete Machine

Hardware cache governs
tag propagation

Cache

1@0

5@0

8@1

17

Concrete Machine
Cache line relates
combination of instruction
and operand tags to result
tag

Cache

Add 0 0 0

opcode
op1 op2

result

1@0

5@0

8@1

17

Cache Operation

1@0

5@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Cache Operation

1@0

5@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Cache Operation

1@0

5@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Cache Operation

1@0

6@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Cache Operation

1@0

6@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Cache Operation

1@0

6@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Cache Operation

1@0

6@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Cache Operation

1@0

6@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Cache Operation

1@0

6@0

8@1

Cache

Add 0 0 ?

Add 0 0 0

Result is 0

Add 0 1 ?

??

miss!

Control is
transferred to
fault handler

18

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode

It can modify the cache, as well as
bypass itIt analyzes the fault context

......!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction
Cache look-up will then succeed,
allowing code to continue

Add 0 1 ?

Cache6@0

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode

It can modify the cache, as well as
bypass it

It analyzes the fault context

......!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction
Cache look-up will then succeed,
allowing code to continue

Add 0 1 ?

Cache6@0

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass it

It analyzes the fault context

.

.....!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction
Cache look-up will then succeed,
allowing code to continue

Add 0 1 ?

Cache6@0

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass it

It analyzes the fault context

.

..

...!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction
Cache look-up will then succeed,
allowing code to continue

Add 0 1 ?

Cache6@0

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass it

It analyzes the fault context

...

...

!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction
Cache look-up will then succeed,
allowing code to continue

Add 0 1 ?

Cache6@0

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass it

It analyzes the fault context

......

!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction
Cache look-up will then succeed,
allowing code to continue

Add 0 1 ?

Cache6@0

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass itIt analyzes the fault context

......!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction
Cache look-up will then succeed,
allowing code to continue

Add 0 1 1

Cache6@0

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass itIt analyzes the fault context

......!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction

Cache look-up will then succeed,
allowing code to continue

Add 0 1 1

Cache

6@0

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass itIt analyzes the fault context

......!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction

Cache look-up will then succeed,
allowing code to continue

Add 0 1 1

Cache6@0

8@1

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass itIt analyzes the fault context

......!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction

Cache look-up will then succeed,
allowing code to continue

Add 0 1 1

Cache6@0

8@1

Result is 1

19

Fault-Handler Operation

Fault
Handler

Handler is a piece of machine code
running in privileged mode
It can modify the cache, as well as
bypass itIt analyzes the fault context

......!

. . . and computes corresponding
result tag

The handler then installs that line
in the cache, returning to faulting
instruction

Cache look-up will then succeed,
allowing code to continue

Add 0 1 1

Cache

6@0

Result is 1

14@1

19

Proving the Refinement

20

Abstract Machine NI

Concrete Machine NI

Refined by

21

Refinement Structure

a1

c1

Concrete

Abstract

labels correctly rep-
resented, cache com-
patible with IFC rules,
machine in user mode

. . .

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

machine runs,
producing output
trace

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

want corresponding abstract trace

combine two execution lemmas

ta

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

cache hit step

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

a2oa

hit case simulation lemma

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

a2oa

p1 pk c3. . .

cache miss step

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

a2oa

p1 pk c3. . .

handler executes . . .

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

a2oa

p1 pk c3. . .

. . . and returns to user code

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

a2oa

p1 pk c3. . .

handler
correctness
lemma

22

Refinement Structure

a1

c1

Concrete

Abstract

. . .
tc

. . .

ta

c2
oc

a2oa

p1 pk c3. . .

proceed
inductively

22

Challenges

Interesting issues involved in these proofs

� Verification of machine code is difficult

� Need to formalize notion of compatibility between
cache and IFC rules

� How to make it work for any IFC lattice?

23

Idea: Structure proof
and implementation

with another refinement

24

Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine Fault Handler

Refined by

25

Abstract Machine

Symbolic-Rule Machine

IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine Fault Handler

Refined by

Refined by

25

Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine Fault Handler

Refined by

Refined by

25

Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine Fault Handler

Refined by

Refined by Easy to show

25

Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine Fault Handler

Refined by

Refined by

Provide formulation of
cache compatibility

25

Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine

Refined by

Refined by

Fault Handler

Correctly
compiled to

25

Abstract Machine

Symbolic-Rule Machine IFC Rules

IFC side-conditions
symbolically
represented by

Concrete Machine

Refined by

Fault Handler

Correctly
compiled toRefined by

Combine hit and miss
simulation lemmas

25

Symbolic Rule Table

Instruction Result Label
Add LAB1tLAB2

Output LAB1
...

...

if the current instruction is

26

Symbolic Rule Table

Instruction Result Label
Add LAB1tLAB2

Output LAB1
...

...

label the result with

26

Symbolic Rule Table

Instruction Result Label
Add LAB1tLAB2

Output LAB1
...

...

for Add, result is as secret as operands

26

Symbolic Rule Table

Instruction Result Label
Add LAB1tLAB2

Output LAB1
...

...

for Output, use same label

26

Handler
Implementation and

Verification

27

Structured-Code
Generators

Structured programming instead of assembly
programming

� Define structured-code generators as Coq functions

� Generators provide a structured language for the
machine (if, case, and, or, while, . . .)

� Prove Hoare-logic rules for each generator

28

Compiling IFC Rules

Write a rule table compiler in Coq

� Use generators as a backend

� Parameterized over correct implementation of lattice
primitives

� Compose Hoare triples to show compiler correctness

29

Algorithm

� Fetch instruction and operand tags from faulting
context

� Compute the result tag from this data using
compiled rule table

� Install computed line into the cache

Proven correct by composing compiler lemma with
triples for the glue code

30

Abstract Machine NI

Symbolic-Rule Machine IFC Rules

IFC side-
conditions
symbolically
represented
by

Concrete Machine Fault Handler NI

Refined by

Refined by Correctly compiled to

Preserved

31

Abstract Machine NI

Symbolic-Rule Machine IFC Rules

IFC side-
conditions
symbolically
represented
by

Concrete Machine Fault Handler

Refined by

Refined by Correctly compiled to

NI

Preserved

31

What Else?

32

More in the Paper

Complete model includes more features

� Control flow and user-level procedures

� Block-structured memory with dynamic allocation

� System calls for implementing new IFC primitives

� Richer IFC labels (sets of principals represented as
pointers to memory arrays)

33

Addressed Challenges

� Track implicit flows

� Allocation and noninterference

� Pointer values could leak secrets

� Label representation depending on machine state

� Low-level code for array manipulation and
corresponding proofs

34

Addressed Challenges

� Track implicit flows

� Allocation and noninterference

� Pointer values could leak secrets

� Label representation depending on machine state

� Low-level code for array manipulation and
corresponding proofs

34

Addressed Challenges

� Track implicit flows

� Allocation and noninterference

� Pointer values could leak secrets

� Label representation depending on machine state

� Low-level code for array manipulation and
corresponding proofs

34

Addressed Challenges

� Track implicit flows

� Allocation and noninterference

� Pointer values could leak secrets

� Label representation depending on machine state

� Low-level code for array manipulation and
corresponding proofs

34

Addressed Challenges

� Track implicit flows

� Allocation and noninterference

� Pointer values could leak secrets

� Label representation depending on machine state

� Low-level code for array manipulation and
corresponding proofs

34

Wrapping Up

35

Conclusions

� Described a hardware mechanism for dynamic
tag-checking and propagation

� Proof architecture for connecting it to high-level
property

� Refinement provides structure to proof

� Everything formalized in Coq

36

Coq Development

Entire formalization available at www.crash-safe.org

Complete machine and corresponding proofs in
approximately 15k LOC

37

Future Work
� More interesting IFC features (concurrency,

declassification, dynamic principal generation, . . .)

� Make model more realistic

� Incorporate more features of SAFE

� Study tag cache in the context of conventional
architectures

� Mechanism is not IFC-specific, investigate other
applications.

38

Thank You!

Questions?

39

	Information-Flow Model
	IFC in Hardware
	Proving the Refinement
	Handler Implementation and Verification
	What Else?
	Wrapping Up

