
Programming Language Concepts

Standard ML Tutorial1

1Adapted from slides and notes by John Reppy & Matthias Blume and Dan Grossman

What is Standard ML?

SML is a general-purpose functional programming language with

• strict evaluation
• strong and static typing
• polymorphic types
• type inference
• datatypes and pattern matching
• functional impurities (mutable objects, side-effects, exceptions)
• a sophisticated module system
• a rigorous formal definition

2

What is Standard ML?

SML is a general-purpose functional programming language with

• strict evaluation
• strong and static typing
• polymorphic types
• type inference
• datatypes and pattern matching
• functional impurities (mutable objects, side-effects, exceptions)
• a sophisticated module system
• a rigorous formal definition

3

History of Standard ML

• 1978: ML (meta language)
• designed and implemented by Robin Milner et. al.
• a programming language for finding and performing proofs in a

formal logical system (LCF)
• features to support writing proof tactics: higher-order functions,

polymorphic types, exceptions
• 1978: Hindley-Milner, Damas-Milner type inference

• a.k.a., polymorphic type checking or Algorithm W
• automatically determine the (most general) types of variables

fun map f l =
case l of nil => nil

| (h::t) => (f h)::(map f t)
(*
val map :

('a -> 'b) -> 'a list -> 'b list
*) 4

History of Standard ML

• 1980: HOPE
• designed and implemented by Rod Burstal et. al.
• pattern matching, early module systems

• 1981: MacQueen modules
• parametric module system for HOPE, inspired by CLEAR’s

parameterized specifications
• extended with novel method of specifying sharing of components

among the structure parameters of a functor
• 1983: Standard ML

• Robert Harper, David MacQueen, Robin Milner
• ML polymorphism, HOPE patterns, Cardelli records, Mycroft et. al.

exceptions (generalizing ML exceptions), MacQueen modules

5

History of Standard ML

• 1990: The Definition of Standard ML
• Robin Milner, Mads Tofte, and Robert Harper
• “A precise description of a programming language is a prerequisite

for its implemention and for its use.”
• formalization of syntax, static semantics, and dynamic semantics

• 1991: Commentary on Standard ML
• Robin Milner and Mads Tofte

6

History of Standard ML

• 1997: The Definition of Standard ML (Revised)
• Robin Milner, Mads Tofte, Robert Harper, and David MacQueen
• “A precise description of a programming language is a prerequisite

for its implemention and for its use.”
• formalization of syntax, static semantics, and dynamic semantics
• < 120 pages (incl. contents, appendicies, bibliography, index)

7

The Definition of Standard ML (Revised) — SML’97

8

The Definition of Standard ML (Revised) — SML’97

9

History of Standard ML

• 2004: The Standard ML Basis Library
• Emden Gasner and John Reppy (eds)
• “the fundamentals: primitive types such as integers and

floating-point numbers, operations requiring runtime system or
compiler support, such as I/O and arrays; and ubiquitous utility
types such as booleans and lists. ... does not cover higher-level
types, such as collection types, or application-oriented APIs, such
as regular expression matching.”

10

The Standard ML Basis Library

http://www.standardml.org/Basis/
11

http://www.standardml.org/Basis/

The Standard ML Basis Library

http://www.standardml.org/Basis/
12

http://www.standardml.org/Basis/

History of Standard ML

• 2007: Defects in the Revised Definition of Standard ML
• Andreas Rossberg
• 14 pages

13

SML Implementations

• Standard ML of New Jersey
• http://www.smlnj.org
• continuation-passing style; incremental compilation and REPL

• MLton
• http://www.mlton.org
• whole-program optimization

• Poly/ML
• http://www.polyml.org
• very fast compilation; REPL

• ML Kit
• http://www.itu.dk/research/mlkit/index.php/Main_Page

• region-based memory managment
• HaMLet

• http://www.mpi-sws.org/~rossberg/hamlet/
• reference interpreter (written in SML, following the Definition)

• MoscowML
• http://www.itu.dk/people/sestoft/mosml.html
• bytecode compiler (using Caml Light runtime system)

14

http://www.smlnj.org
http://www.mlton.org
http://www.polyml.org
http://www.itu.dk/research/mlkit/index.php/Main_Page
http://www.mpi-sws.org/~rossberg/hamlet/
http://www.itu.dk/people/sestoft/mosml.html

Using the MoscowML

• interactive REPL (read-eval-print-loop)
• Type mosml to run the MoscowML interactive REPL
• Ctrl-d exits the REPL; Ctrl-c interrupts execution.
• Some ways to run ML programs:

• type in code in the interactive read-eval-print loop

- 1 + 1;

• load ML code from a file (e.g., foo.sml)

- use "foo.sml";

• batch compiler
• Type mosmlc to run the MoscowML batch compiler

15

Hello, World!

(* first program *)
val x = print "Hello, World!\n"

• A program is a sequence of bindings
• One kind of binding is a variable binding
• Execution evaluates bindings in order
• To evaluate a variable binding:

• Evaluate the expression (to the right of =)
in the environment created by the previous bindings.

• This produces a value.
• Extend the (top-level) environment, binding the variable to the

value.

16

Theory Break

Some terminology and pedantry:

• Expressions are evaluated in an environment
• An environment maps variables to values
• Expressions are type-checked in a context
• A context maps variables to types

• Values are integers, strings, function-closures, …
• (“things already evaluated”)

• Expressions have evaluation rules and type-checking rules

17

Simple expressions

• Integers: 3, 54, ~3, ~54
• Reals2: 3.0, 3.14159, ~3.6E00
• Booleans: true, false, not
• Strings: "abc", "hello world\n", x ^ ".sml"

• Chars: #"a", #"\n",
• Overloaded operators: +, -, *, <, <=
• Lists: [], [1,2,3], ["x","sml"], 1::2::nil
• Tuples: (), (1,true), (3,"abc",false)
• Records: {a=1,b=true}, {name="bob",age=8}
• conditionals, functions, function applications

2floating-point numbers

18

Value Declarations

Binding a value to a variable.

• syntax
val var = exp

• examples
val x = 3

val y = x + 1

val z = y - x

Thus, variables are identifiers that name values.

Once a binding for a variable is established,
the variable names the same value until it goes out of scope.

Standard ML variables are immutable. 19

Function Declarations

Binding a function (which is a value) to a variable.

• syntax (simplified)
fun var f vara = exp

• examples
fun fact n =

if n <= 0 then 1
else n * fact (n - 1)

fun fact2_loop (n, f) =
if n = 0 then f
else fact2_loop (n - 1, n * f)

fun fact2 n = fact2_loop (n, 1)

20

Let expressions

Limit the scope of variables from declarations.

• syntax
let decl in exp end

• example

let
val x = let val y = 1

in y + y
end

fun f z = (z, x * z)
in

f (4 + x)
end

21

Function expressions

Introduce a function from one argument to one result.
Such an anonymous function has no name, but is a value,
so it can be bound to a variable.

• syntax (simplified)
fn var => exp

• example

val double = fn z => 2.0 * z

val inc = fn x => x + 1

The last is equivalent to

fun inc x = x + 1

22

Function expressions (cont.)

Because functions are first-class,
one function can return another function as a result.

• example
val add = fn x => fn y => x + y
val inc = add 1 (* == fn y => 1 + y *)
val three = inc 2

The first is equivalent to
fun add x y = x + y

This is one “solution” to functions taking multiple arguments;
such functions are called curried functions.

Another “solution” is to take a value that is a data structure
containing multiple values.

23

Tuple and record expressions

Create collections of values.

• tuples, syntax
(exp1 , . . . , expn)

• tuples, examples

val x = ("foo", 1.0 / 2.0, false)
val y = (x, x)

• records, syntax
{ lab1 = exp1 , . . . , labn = expn }

• records, examples

val car = {make = "Toyota", year = 2001}

24

List expressions

Finite sequences of values.

• syntax
nil expx :: expl

[exp1 , . . . , expn]

• examples

val l0 = nil
val l1 = 1.0 :: 2.0 :: 3.0 :: nil
val l2 = [1.0, 2.0, 3.0]
val l3 = 1.0 :: 2.0 :: [3.0]

All of l1, l2, and l3 are equivalent.

25

Patterns

Decompose compound values;
commonly used in value bindings and function arguments.

• revized syntax for declarations and function expressions
val pat = exp fun var f pata = exp

fn pat => exp
• variable patterns

val z = 3
val pair = (z, true)

⇒ z = 3, pair = (3, true)

• tuple and record patterns
val (x,y) = pair

⇒ x = 3, y = true

val {make=mk, year=yr} = car

⇒ mk = "Toyota", yr = 2001

26

Patterns (cont.)

• wildcard patterns

val _ = 4 * 3 * 2 * 1

⇒
• constant patterns

val 3 = 1 + 2
val true = 1 < 3

• constructor patterns

val l = [1,2,3]
val fst::rest = l
val [x,_,z] = l

⇒ fst = 1, rest = [2,3], x = 1, z = 3

27

Patterns (cont.)

• nested patterns
val ((x,y),z) = ((1,2),3)
val (a,b)::_ = [(3.0,true),(5.0,false)]

⇒ x = 1, y = 2, z = 3

⇒ a = 3.0, b = true

• as patterns
val l as (a,b)::_ = [(3.0,true),(5.0,false)]
val t as (p as (x,y),z) = ((1,2),3)

⇒ l = [(3.0,true),(5.0,false)],
⇒ a = 3.0, b = true,
⇒ t = ((1,2),3), p = (1,2), x = 1,
⇒ y = 2, z = 3

28

Pattern matching

What to do when there is more than one way to decompose a
value?
Use pattern matching to consider each possible way.

• match rule, syntax
pat => exp

• match, syntax
pat1 => exp1 | · · · | patn => expn

When a match is applied to a value value,
we try the rules from left to right,
looking for the first rule whose pattern matches value.
We then bind the variables in the pattern and evaluate the
expression.

29

Pattern matching (cont.)

Pattern matching is used in a number of expression and declaration
forms.

• case expression, syntax
case exp of match

• function expression, syntax
fn match

• clausal function declaration, syntax
fun var f pat1 = exp1 | · · · | var f patn = expn

The function name (var f) is the same in all branches.

30

Pattern matching examples

fun length l =
case l of [] => 0

| _ :: r => 1 + length r

fun length [] = 0
| length (_ :: r) = 1 + length r

val isZero = fn 0 => true | _ => false

fun even 0 = true
| even n = odd (n - 1)

and odd 0 = false
| odd n = even (n - 1)

31

Types

Every expression has a type.

• primitive types: int, string, bool
3 : int true : bool "abc" : string

• function types: ty1 -> ty2

even : int -> bool

• product types: ty1 * · · · * tyn, unit
(3, true) : int * bool () : unit

• record types: { lab1: ty1 , · · · , labn: tyn }

car : {make: string, year: int}

• type operators: ty list (for example)
[1,2,3] : int list

32

Type abbreviations

Introduce a new name for a type.

• syntax
type tycon = ty

• examples
type point = real * real
type line = point * point
type car = {make: string, year: int}

• syntax
type tyvar tycon = ty

• examples
type 'a pair = 'a * 'a
type point = real pair

33

Datatypes

Algebraic datatypes are one of the most useful and convenient
features
of Standard ML (and other functional programming languages).

They introduce a (brand) new type that is a tagged union
of some number of variant types.

• syntax
datatype tycon = con1 of ty1 | · · · | conn of tyn

• example
datatype color = Red | Green | Blue
datatype shape =

Circle of color * real
| Rectangle of color * real * real

34

Datatypes (cont.)

The data constructors can be used both
in expressions to create values of the new type and
in patterns to discriminate variants and to decompose values.

• example
fun area s =

case s of
Circle (_, r) = Math.pi * r * r

| Rectangle (_, l1, l2) => l1 * l2

val c = Circle (Red, 2.0)

val a = area c

Datatypes can be recursive.

• example
datatype intlist = Nil | Cons of int * intlist

35

Datatype example

datatype int_btree = Leaf
| Node of int_btree * int * int_btree

fun depth t =
case t of

Leaf => 0
| Node (l, _, r) => 1 + max (depth l, depth r)

fun insert t i =
case t of

Leaf => Node (Leaf, i, Leaf)
| Node (l,j,r) =>

if i=j then t
else if i < j

then Node(insert l i,j,r)
else Node(l,j,insert r i)

36

Datatype example

datatype int_btree = Leaf
| Node of int_btree * int * int_btree

(* in-order traversal of trees *)
fun inttreeToList t =

case t of
Leaf => []

| Node (l, i, r) =>
(inttreeToList l) @ [i] @ (inttreeToList r)

37

Representing programs as datatypes

type var = string

datatype exp = Var of var (* x *)
| Num of int (* 1 *)
| Plus of exp * exp (* e1 + e2 *)
| Times of exp * exp (* e1 * e2 *)

datatype stmt = Seq of stmt * stmt (* s1 ; s2 *)
| Assign of var * exp (* x := e *)
| Print of exp list (* print (e1,...) *)

val prog =
Seq (Assign ("a", Plus (Num 5, Num 3)),

Print [Var "a"])
(* a := 5 + 5 ; print (a) *)

38

Computing properties of programs: size

fun sizeE (Var _) = 1
| sizeE (Num _) = 1
| sizeE (Plus (e1, e2)) = sizeE e1 + sizeE e2 + 1
| sizeE (Times (e1, e2)) = sizeE e1 + sizeE e2 + 1

fun sizeEL [] = 0
| sizeEL (e::es) = sizeE e + sizeEL es

fun sizeS (Seq (s1,s2)) = sizeS s1 + sizeS s2 + 1
| sizeS (Assign (_,e)) = 2 + sizeE e
| sizeS (Print es) = 1 + sizeEL es

sizeS prog ⇒ 8

39

Type inference

When defining values (including functions),
types do not need to be declared
— they will be inferred by the compiler:

- fun f x = x + 1;
val f = fn : int -> int

- fun isPos n = n > 0
val isPos = fn : int -> bool

Any inconsistencies will be detected as type errors.
- if 1 < 2 then 3 else "four";
stdIn:1.1-1.25 Error: types of if branches do not agree [literal]

then branch: int
else branch: string
in expression:

if 1 < 2 then 3 else "four"

Some error messages are better than others....

40

Type inference (cont.)

Type inference works with all types in the language.

- fun area (Circle (_,r)) = Math.pi * r * r
= | area (Rectangle (_,l1,l2)) = l1 * l2;
val area = fn : shape -> real

Overloaded operators default to int;
use type annotations (called ascriptions) to be explicit.

- fun add (x, y) = x + y;
val add = fn : int * int -> int
- fun addR (x: real, y) = x + y;
val addR = fn : real * real -> real

41

Polymorphic type inference

Type inference produces the most general type, which may be
polymorphic.

- fun ident x = x;
val ident = fn : 'a -> 'a
- fun pair x = (x, x);
val pair = fn : 'a -> 'a * 'a
- val fst = fn (x, y) => x
val fst = fn : 'a * 'b -> 'a
- val foo = pair 4.0;
val foo = (4.0,4.0) : real * real

pair was used at the type real -> real * real.
- val z = fst foo;
val z = 4.0 : real

fst was used at the type real * real -> real. 42

Polymorphic datatypes

datatype 'a btree = Leaf
| Node of 'a btree * 'a * 'a btree

fun depth t =
case t of

Leaf => 0
| Node (l, _, r) => 1 + max (depth l, depth r)

val depth = fn : 'a btree -> int

fun btreeToList t =
case t of

Leaf => []
| Node (l, x, r) =>

(btreeToList l) @ [x] @ (btreeToList r)
val btreeToList = fn : 'a btree -> 'a list

fun btreeMap f Leaf = Leaf
| btreeMap f (Node (l, x, r)) =

Node (btreeMap f l, f x, btreeMap f r)
val btreeMap = fn : ('a -> 'b) -> 'a btree -> 'b btree

43

Closure idioms

Closure: Function plus environment where function was defined

• Environment matters when function has free variables

1. Create similar functions
2. Combine functions
3. Pass functions with private data to iterators
4. Provide an abstract data type
5. Currying and partial application

44

Create similar functions

fun addn m n = m + n

val add_one = addn 1

val add_two = addn 2

fun mkAddList m =
if m = 0

then []
else (addn m)::(mkAddList (m-1))

val lst65432 = map (fn add => add 1) (mkAddList 5)

45

Combine functions

fun f1 g h = (fn x => g (h x)) (* compose *)

datatype 'a option = NONE | SOME of 'a (* predefined *)

fun f2 g h x =
case g x of

NONE => h x
| SOME y => y

val printInt = f1 print Int.toString

fun truncate1 lim f = f1 (fn x => Real.min (lim, x)) f

46

Private data for iterators

fun map f lst =
case lst of

[] => []
| h::t => (f h) :: (map f t)

fun incr lst = map (fn x => x+1) lst
val incr = map (fn x => x + 1)

fun mul i lst = map (fn x => x * i) lst
fun mul i = map (fn x => x * i)

47

A more powerful iterator

fun foldl f acc lst =
case lst of

[] => acc
| h::t => foldl f (f (h, acc)) t

val f1 = foldl (fn (x, y) => x + y) 0
val f2 = foldl (fn (x, y) => y andalso x > 0) true

fun f3 lo hi lst =
foldl (fn (x, y) => if x>lo andalso x<hi

then y+1 else y)
0
lst

48

Thoughts on fold

• Functions like foldl decouple recursive traversal (“walking”)
from data processing

• No unecessary type restrictions
• Similar to visitor pattern in OOP

• Private fields of visitor like free variables

49

Provide an ADT

This is difficult stuff.

datatype intset = ISET of { add : int -> intset,
member : int -> bool}

val empty_set =
let

fun exists (lst: int list) j =
let fun iter rest =

case rest of
[] => false

| h::t => j=h orelse iter t
in iter lst
end

fun make_set lst =
ISET {add = fn i => (make_set(i::lst)),

member = exists lst }
in

make_set []
end

50

Thoughts on ADT example

• By “hiding the list” behind the functions, we know clients do
not assume anything about the representation

• Why? All you can do with a function is apply it
• No other primitives on functions
• No reflection
• No aspects
• …

51

Currying

• We’ve been using currying and partial application a lot
• Efficient and convenient in SML

• (efficiency depends upon compiler; most are very good)

• Remember: the semantics is to build closures.

val f = fn x => (fn y => (fn z => ...))
val a = ((f 1) 2) 3

52

Exceptions

- 5 div 0; (* primitive failure *)
uncaught exception Div

exception NotFound of string (* declare new exception *)
type 'a dict = (string * 'a) list
fun lookup (s, nil) = raise (NotFound s)

| lookup (s, (k,v)::rest) =
if s = k then v else lookup (s, rest)

val lookup : string * 'a dict -> 'a

val d = [("foo",2), ("bar",~1)]
val d : (string * int) list (* == int dict *)

val x = lookup ("foo", d)
val x = 2 : int

val y = lookup ("baz", d)
uncaught exception NotFound

val y = lookup ("baz", d) handle NotFound s =>
(print ("NotFound: " ^ s ^ "\n") ; 0)

NotFound: baz
val y = 0 : int

53

References and Assignments

Although SML variables are immutable,
SML provides a type of mutable cells.
type 'a ref
val ref : 'a -> 'a ref
val ! : 'a ref -> 'a
val := : 'a ref * 'a -> unit

- val lineNum = ref 0; (* create mutable cell *)
val lineNum = ref 0 : int ref

- fun lineCount () = !lineNum; (* access mutable cell *)
fun lineCount = fn : unit -> int

- fun newLine () = lineNum := !lineNum + 1; (* increment the cell *)
fun newLine = fn : unit -> unit

- val lineNum = ref 0; (* create mutable cell *)
val lineNum = ref 0 : int ref

54

References and Assignments (cont.)

SML variables are immutable:
local

val x = 1
in

fun new1 () = let val x = x + 1 in x end
end

new1 always returns 2.

SML references are mutable:
local

val x = ref 1
in

fun new2 () = (x := !x + 1; !x)
end

new2 returns 2, 3, 4, . . . on successive calls.
55

Standard ML = Core Language + Module Language

SML is made up of two sub-languages

• core language:
• expressing types and computations

• module language
• packaging elements of core language into units for modularity and

reuse

The module language is a language:
it has non-trivial static and dynamic semantics.

It is not simply a namespace management veneer.

56

Standard ML: Module Language

• Structures
• an encapsulated, named, collection of (type and value) declarations

• Signatures
• an encapsulated, named, collection of specifications
• classify structures

• Functors
• an encapsulated, named, function from structures to structures

To a rough approximation, the Standard ML module language
is a first-order language3 with no conditionals or recursion.

• not Turing complete
• evaluate module language progam at compile-time (MLton,

MLKit)
3Proposals for higher-order functors; still strongly normalizing.

57

Structures

A structure collects type and value declarations into a nameable
module.
structure UniqueId = struct

type id = int
val ctr = ref 0
fun new() = let

val i = !ctr
val () = ctr := i + 1

in
i

end
fun toString i = "id" ^ (Int.toString i)
fun compare (i1, i2) = Int.compare (i1, i2)

end

58

Structures

Access structure components via dot notation:
val a = UniqueId.new ()
val b = UniqueId.new ()
val aStr = UniqueId.toString a
val bStr = UniqueId.toString b

59

Structures

A structure collects type and value and structure declarations
into a nameable module.
structure UniqueId = struct

structure Counter = struct
type ctr = int ref
fun new() = ref 0
fun next(ctr) = let

val i = !ctr
val () = ctr := i

in
i

end
end
type id = int
val ctr = Counter.new ()
fun new() = Counter.next ctr
fun toString i = "id" ^ (Int.toString i)
fun compare (i1, i2) = Int.compare (i1, i2)

end

60

Signatures

A signature is the “type” of a structure:

• specification of types in structure
• type of values in structure
• signature of sub-structures in structure

signature UNIQUE_ID = sig
type id = int
val ctr : int ref
val new : unit -> id
val toString : id -> string
val compare : id * id -> order

end

61

Signatures

A signature is the “type” of a structure:

• specification of types in structure
• type of values in structure
• signature of sub-structures in structure

signature UNIQUE_ID = sig
structure Counter : sig

type ctr = int ref
val new : unit -> ctr
val next : ctr -> int

end
type id = int
val ctr : Counter.ctr
val new : unit -> id
val toString : id -> string
val compare : id * id -> order

end

61

Signatures

A signature is the “type” of a structure:

• specification of types in structure
• type of values in structure
• signature of sub-structures in structure

signature UNIQUE_ID = sig
structure Counter : sig

type ctr = int ref
val new : unit -> ctr
val next : ctr -> int

end
type id = int
val ctr : Counter.ctr
val new : unit -> id
val toString : id -> string
val compare : id * id -> order

end

Have I said too much?

61

Signatures

A signature is the “type” of a structure:

• specification of types in structure
• type of values in structure
• signature of sub-structures in structure

signature UNIQUE_ID = sig
type id
val new : unit -> id
val toString : id -> string
val compare : id * id -> order

end

61

Signature matching

A structure matches a signature if every specification in the
signature
is satisfied by a component of the structure.
After matching, only specifications in the signature
are available in the structure.
signature UNIQUE_ID = sig

type id
val new : unit -> id
val toString : id -> string
val compare : id * id -> order

end
structure UniqueID : UNIQUE_ID = struct

...
end
val ctr = UniqueId.ctr (* ERROR *)

62

Transparent signature matching

A transparent signature match (:) reveals the implementation of
types,
even if their implementation is not specified in the signature.
signature UNIQUE_ID = sig

type id
val new : unit -> id
val toString : id -> string
val compare : id * id -> order

end
structure UniqueID : UNIQUE_ID = struct

...
end
val aId = UniqueID.new ()
val z = aId + aId

UniqueId.id is considered equivalent to int.
63

Opaque signature matching

An opaque signature match (:>) does not reveal the
implementation.
signature UNIQUE_ID = sig

type id
val new : unit -> id
val toString : id -> string
val compare : id * id -> order

end
structure UniqueID :> UNIQUE_ID = struct

...
end
val aId = UniqueID.new ()
val z = aId + aId (* ERROR *)

UniqueId.id is considered a new type, distinct from all other types
(including int).

64

Functors

A functor parameterizes a structure with respect to an input
signature.
functor TestUniqueId(structure UId : UNIQUE_ID) = struct

val aId = UId.new ()
val bId = UId.new ()
val cId = UId.new ()
val result =

(UId.compare (aId, aId) = EQUAL) andalso
(UId.compare (bId, bId) = EQUAL) andalso
(UId.compare (cId, cId) = EQUAL) andalso
(UId.compare (aId, bId) <> EQUAL) andalso
(UId.compare (bId, aId) <> EQUAL) andalso
(UId.compare (aId, cId) <> EQUAL) andalso
(UId.compare (cId, aId) <> EQUAL) andalso
(UId.compare (bId, cId) <> EQUAL) andalso
(UId.compare (cId, bId) <> EQUAL)

end 65

Functors

A functor parameterizes a structure with respect to an input
signature.

signature ORDER = sig
type t
val compare : t * t -> order

end
signature DICTIONARY = sig

type key
type 'a t
exception DictExn
val empty : 'a t
val lookup : 'a t * key -> 'a t
val insert : 'a t * key * 'a -> 'a t
val update : 'a t * key * 'a -> 'a t

end
functor ListDictionary(struct Key: ORDER)

: DICTIONARY = struct
...
end

66

Functors

A functor parameterizes a structure with respect to an input
signature.

signature ORDER = sig
type t
val compare : t * t -> order

end
signature DICTIONARY = sig

type key
type 'a t
exception DictExn
val empty : 'a t
val lookup : 'a t * key -> 'a t
val insert : 'a t * key * 'a -> 'a t
val update : 'a t * key * 'a -> 'a t

end
functor BTreeDictionary(struct Key: ORDER)

: DICTIONARY = struct
...
end

66

Functors

A functor parameterizes a structure with respect to an input
signature.

signature ORDER = sig
type t
val compare : t * t -> order

end
signature DICTIONARY = sig

type key
type 'a t
exception DictExn
val empty : 'a t
val lookup : 'a t * key -> 'a t
val insert : 'a t * key * 'a -> 'a t
val update : 'a t * key * 'a -> 'a t

end
functor RBTreeDictionary(struct Key: ORDER)

: DICTIONARY = struct
...
end

66

Functors

A functor parameterizes a structure with respect to an input
signature.
Sophisticated type refinement machinery to express relationships
between types in input signature and output structure.
functor RBTreeDictionary(struct Key: ORDER)

:> DICTIONARY where type key = Key.t = struct
...
end

A dictionary is an abstract type,
so want to hide the implementation of 'a t

using an opaque signature constraint.
But, that would also hide the implementation of key,
making the resulting structure unusable.
We add a constraint to the output signature
to reveal the implementation of key,
insofar as it is equivalent to the input Key.t.

67

Functors

Fully-functorial programming

• code almost entirely with functors
• functors and signatures are self-contained,

refer only to other signatures and to pervasive components
(e.g., the Standard Basis Library)

• all non-trivial program units coded as functors
that can be written and separately compiled

• one link structure: applies functors
to produce one structure containing the executable program

68

