
Programming Language Concepts

CSCI-344 Section 01
Prof. Arthur Azevedo de Amorim

MoWeFr 2:00pm – 2:50pm
SLA-2150



Programming Language Concepts

Introduction and Overview



Course Description
This course is a study of the syntax and semantics of a diverse set of
high-level programming languages. The languages chosen are com-
pared and contrasted in order to demonstrate general principles of
programming language design and implementation. The course em-
phasizes the concepts underpinning modern languages rather than the
mastery of particular language details. Programming projects will be
required.

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 3



Course Goals
Widen perspective and understanding of PLs.
I Alternative programming paradigms and languages
I Theory that underlies language mechanisms
I Implementation choices for implementing languages
I Become a much better programmer

I (in any language, even languages we won’t study)

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 4



Course Motivation
Why not study programming languages?
I “I only need to know C++ (or C# or Java or Python or ...) to get a job.”
I “I already know how to program.”
I “I will never need to design (or implement) a programming language.”

I How many have been on co-op? and used a programming language
that had not been introduced in a course?

I Are you ever done learning how to paint? dance? build?
I How many have used a non-trivial library API (e.g., OpenGL)?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 5



Course Motivation
Why not study programming languages?
I “I only need to know C++ (or C# or Java or Python or ...) to get a job.”
I “I already know how to program.”
I “I will never need to design (or implement) a programming language.”

I How many have been on co-op? and used a programming language
that had not been introduced in a course?

I Are you ever done learning how to paint? dance? build?
I How many have used a non-trivial library API (e.g., OpenGL)?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 5



Course Motivation
Why study programming languages?

Languages influence way of thinking:
I Learn to learn languages

I Use more than one language in your career
I Learn to more effectively use languages

I Understand features and implementations
I Learn to design languages

I Use a language to solve a problem

Can’t cover everything about programming languages;
focus on some of the great features (that are repeated in many languages).

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 6



Course Motivation
How not to study programming languages concepts:
I Java in January
I Forth in February
I Modula-3 in March
I Ada in April
I . . .

Course is titled “Programming Language Concepts”
and not “Programming Languages” for a reason.

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 7



Course Motivation
How we will study programming language concepts:
I use “micro” languages based on “real” languages

I focus on the essential great features
I introduce intellectual tools to define languages

I precision to understand great features
I starting point for PL research

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 8



Introductions and Icebreaker
Who am I?
I Arthur Azevedo de Amorim
I Learned about PL and formal verification in college
I Went on to graduate school

I Languages for privacy and information security
I Formal verification of security hardware, cryptographic code, compilers, . . .

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 9



Introductions and Icebreaker
Who are you?

Give your name and name a programming language (no repeats).

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 10



Course Administration
Instructor: Arthur Azevedo de Amorim
I E-mail: aaavcs@rit.edu
I Office: GOL-3547
I Office hours: Mo 3pm – 4pm;

We 11am – 12pm;
or by appointment

Website
I http://arthuraa.net/teaching/20235/plc
I http://mycourses.rit.edu

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 11

aaavcs@rit.edu
http://arthuraa.net/teaching/20235/plc
http://mycourses.rit.edu


Course Rhythm
I Textbook reading
I Reading quiz
I Lectures: 1 – 3 class periods
I Recitation: 1 class period
I Programming assignment

...

I Final Exam (Wed. May 1, 10:45am–1:15pm, SLA-2150)

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 12



Assignments, Exams, & Grades
I 10% — Reading Quizzes (≈ 13)
I 5% — Attendance & Participation (lectures)
I 5% — Attendance & Participation (recitations)
I 65% — Programming Assignments (≈ 8)
I 15% — Final exam

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 13



Textbook
Programming Language: Build, Prove, and Compare, Norman Ramsey

(Finally) Published textbook by a respected colleague.
I have used draft versions of PL:BPC for CSCI-344 for a number of years;
feedback from previous instances of the course have been incorporated.
Available in hardcover and eBook formats.

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 14



Reading Quizzes
I on myCourses (Quizzes)
I due at 8:00AM of day of lecture that begins topic
I short (approx. 15min w/ 60min time limit) and easy (unlimited attempts),

demonstrating that you have read

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 15



Attendance & Participation
Lectures:
I Won’t cover everything, just the hard parts.
I Will post electronic materials to website (after lectures).

I (but trying to use slides less and board more)

Participation means being an engaged student:
I Asking and answering questions.
I Let me know if pace is too fast or too slow.
I (Not simply attending class.)
I When I enter your grade, will I know who you are?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 16



Attendance & Participation
Recitations:
I Small group problem solving
I Practice with key topics
I Jump start on programming assignments

Participation means being an engaged student:
I Contributing to group problem solving.
I Presenting solutions.

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 17



Programming Assignments
Demonstrate understanding of concepts and languages.
I (understanding, not mastery)

Assignments will get progressively more difficult through the semester.

Most assignments done individually; some involve pair programming.
Discussions at white board allowed and encouraged,
but do not share code.

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 18



Academic Integrity & Late Policy
Academic Integrity
I Read course policy (and linked policies)

Late Policy
I Programming Assignments due at 11:59pm
I 3 “extension tokens”

I grants a 24-hour extension on a single programming assignment
(no extensions for reading quizzes)

I automatically applied to “Late Submissions” on myCourses
(submitted after “Due Date” but before “End Date”)

I only one extension per assignment
I won’t answer questions about assignment after “Due Date”

I for extraordinary circumstances,
contact an appropriate administrative staff member;
will make special arrangements suited to the situation

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 19



Success, inside and outside of PLC
I love this material and genuinely want students to succeed at PLC.
I Aspects of the course material are meant to be challenging,

but your time should be spent on the “interesting” parts.
I If you find yourself struggling for over an hour without making progress,

then put the work aside and make a plan to seek guidance.
I Reach out via e-mail and/or attend office hours

I know that “life happens” outside of PLC.
I Make use of the many resources at RIT (incl. your instructors).
I Connect with me early about any difficulties you have in this course

I Much easier to get “back on track” after a week than after three or four

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 20



Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 21



What is a Programming Language?
I A “language” for writing “programs”

I Language
I Agreed upon medium for communication
I Formal notational system

I Program
I Computation (e.g., algorithms)
I Executed/Interpreted by machine

I like programming languages because
there is nothing like a good language
to help us express computations precisely,
in ways that we can reason about them,
while still keeping things at a high level.

–Norman Ramsey (Tufts University)

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 22



What is a Programming Language?
I A “language” for writing “programs”

I Language
I Agreed upon medium for communication
I Formal notational system

I Program
I Computation (e.g., algorithms)
I Executed/Interpreted by machine

I like programming languages because
there is nothing like a good language
to help us express computations precisely,
in ways that we can reason about them,
while still keeping things at a high level.

–Norman Ramsey (Tufts University)

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 22



What is a Programming Language?
I A “language” for writing “programs”

I Language
I Agreed upon medium for communication
I Formal notational system

I Program
I Computation (e.g., algorithms)
I Executed/Interpreted by machine

I like programming languages because
there is nothing like a good language
to help us express computations precisely,
in ways that we can reason about them,
while still keeping things at a high level.

–Norman Ramsey (Tufts University)

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 22



What is a Programming Language?
Separable concepts for defining and learning a language:
I Syntax: how do you write the various parts of the language?
I Semantics: what do programs mean?
I Idioms: how is the language used to express computations?
I Libraries: does the language provide “standard” facilities

(e.g, file-access, hashtables, GUIs, . . . )?
I Tools: what is available for manipulating programs in the language?

(e.g., compiler/interpreter, debugger, documenter, . . . )

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 23



History of Programming Languages

Languages
january 1st, 2021

 Éric Lévénez 1999-2021
<http://www.levenez.com/lang/>

FORTRAN II
1957

FORTRAN
november 1954

FORTRAN I
october 1956

FORTRAN III
end-1958

Flow-Matic
1958

ALGOL 58
1958

Lisp
1958

Lisp 1
1959

COBOL
1959

B-O
1957

1954 1957

IAL
1958

JOVIAL
1959

Forth
1968

BASIC
may 1, 1964

COBOL 61
1961

COBOL
1965

FORTRAN IV
(Fortran 66 ANS)

1966

FORTRAN IV
1962

BCPL
july 1967

ALGOL 68
december

1968

PL/I
1964

B
1969

Simula 67
1967

COBOL 68 ANS
1968

APL
1960

ALGOL 60
1960

SNOBOL
1962

Simula I
1964

Lisp 1.5
1962

SNOBOL 2
april 1964

SNOBOL 3
1965

SNOBOL 4
1967

Logo
1968

COBOL 61 
Extended

1962

CPL
1963

1960 1965

MUMPS
1966

ISWIM
1966

JOVIAL I
1960

JOVIAL II
1961

JOVIAL 3
1965

CORAL 64
1964

CORAL 66
1966

TELCOMP
1965

JOSS
1964

GOGOL
1964

GOGOL III
1967

Sail
1968

sh
1969

ALGOL W
1966

Ada
1979

FORTRAN V
(Fortran 77 ANSI)

april 1978

CLU
1974

COBOL 74 ANSI
1974

Modula
1975

Modula 2
1979

C (K&R)
1978

C
1971

awk
1978

csh
october 1978

Scheme MIT
1978

Scheme
1975

Prolog
1970

Icon
1977

Smalltalk-72
1972

PL/1 ANS
1976

PL/M
1972

Smalltalk-76
1976

Smalltalk-74
1974

Smalltalk-78
1978

Rex 1.00
may 1979

MS Basic 2.0
july 1975

Pascal
1970

ML
1973

Mesa
1977

1970 1975

MUMPS (ANSI)
september 15, 1977

SASL
1976

sed
1973

FIG-Forth
1978

Mainsail
1975

SL5
1976

Smalltalk
1971

Classic C

Pascal AFNOR
1983

Object Pascal
1985

PostScript
1982

Smalltalk-80
1980

ANSI C
(C89)
1989

Objective-C
1983

C with Classes
april 1980

C++
july 1983

Concurrent C
1984

Eiffel
1986

nawk
1985

COBOL 85 ISO/ANSI
1985

Common Lisp
1984

Scheme 84
1984

Ada 83 ANSI
january 1983

Ada ISO
1987

Oberon
1987

Prolog II
october 1982

OO Forth
1987

Clos
1989

Object Logo
1986

Prolog III
1984

APL 2
august 1984

SML
1984

Modula 3
1988

Perl 3.000
october 18, 1989

Perl 2.000
january 5, 1988

Perl 1.000
december 18, 1987

Tcl
mid 1988

Tcl/Tk
end 1988

Rex 2.00
1980

Rex 3.00
1982

Rexx 3.20
1984

Caml
1987

Eiffel 2
1988

ABC
1987

B
1981

Haskell 1.0
1987

Self

Borland
Turbo Pascal

Cedar
1983

1980 1985

MUMPS (FIPS)
1986

Sharp APL

A
1988

Miranda
1982

KRC
1981

Forth-83
1983

ANS Forth
1986

ARM C++
1989

BASICA
1981

GW-Basic
1983

MS Basic PDS 7.0
1989

QuickBasic 1.0
1985

QuickBasic 4.5
1988

Fortran 90 ISO
1991

SML ‘90
1990

Oak
june 1991

Perl 4.000
march 21, 1991

PostScript level 2
1992

Perl 5.000
october 18, 1994

Common Lisp ANSI
december 8, 1994

Scheme IEEE
1990

Python
1991

NetRexx
1991

ISO C
(C90)

december 15, 1990

Caml 2-6.1
1991

Caml 3.1
1993

Visual Basic 1.0
may 20, 1991

Oberon-2
1991

Sather 0.1
june 1991

Sather 1.0
mid-1994

Ruby
february 24, 1993

Haskell 1.1
april 1, 1990

Haskell 1.2
march 1992

Cmm
1992

1990

MUMPS ISO
1992

M
1994

A+
1992

J
1990

Visual Basic 2.0
march 1992

Visual Basic 3.0
june 93

Eiffel 3
1993

MS PDS 7.1
1990

SML ‘97
1997

Java 2 (v1.2)
december 8, 1998

PostScript level 3
september 11, 1996

C++98 ANSI/ISO
1998

APL96
1996

OO COBOL
1997

Scheme R5RS
1998

Ada 95
1995

Java 1
may 23, 1995

Delphi
march 2, 1995

Delphi 5
august, 1999

Modula-2 ISO
june 1, 1996

Tcl/Tk 8.1
april 1999

Python 1.5.2
april 13, 1999

Perl 5.005_50
july 26, 1998

NetRexx 1.150
july 23, 1999

Object Rexx
february 25, 1997

Prolog IV
1997

ISO C
(C95)

april 1, 1996

ISO C (C99)
december 1, 1999

Objective Caml
1996 O’Caml 2

1998

Visual Basic 6.0
june 16, 1998

Sather 1.1
september 1995

Sather 1.2.1
november 4, 1999

Ruby 0.95
december 1995

Ruby 1.1 alpha 0
august 13, 1997

Ruby 1.3.2
april 2, 1999

Haskell 1.3
may 1996

Haskell 1.4
april 1997

Haskell 98
february 1999

Fortran 95 ISO
december 15, 1997

LiveScript
1995

JavaScript
december 1995

JavaScript 1.5

ECMAScript
june 1997

ECMAScript ed3
december 1999

JScript
may 1996

Self 4.0
july 10, 1995

PHP/FI
1995

PHP 2.0
nov. 13, 1997

PHP 3.0
june 6, 1998

O’Caml 1.0.7
december 11, 1997

Tcl/Tk 8.2.3
dec. 16, 1999

Eiffel 4
december 11, 1996

Eiffel 4.2
february 6, 1998

1995

M ANSI
dec 8, 1995

Open M
dec 11, 1995

M ISO
1999

K
1996

Visual Basic 4.0
september 1995

Visual Basic 5.0
april 1997

ANSI Rexx

ISO Forth
1997

ANSI Smalltalk
may 19, 1998

Modula-2 ISO
Generic Extension
december 19, 1998

JavaScript 2.0
(draft 1)

february 18, 1999

Perl 5.6.0
march 28, 2000

Java 2 (v1.3)
may 8, 2000

O’Caml 3.00
june 2000

C#
june 26, 2000

Python 1.6
september 5, 2000

Python 2.0
october 16, 2000

Ruby 1.6.1
september 27, 2000

Perl 5.7.0
september 2, 2000

Ruby 1.6.5
september 19, 2001

Python 2.2
december 21, 2001

Python 2.1
april 17, 2001

C#
(ECMA)

december 13, 2001

Java 2 (v1.4)
early access

february 6, 2002

JScript

Self 4.1
august 7, 2001

O’Caml 3.02
july 30, 2001

O’Caml 3.03
dec 10, 2001

PHP 4.0
may 22, 2000

PHP 4.1.0
december 8, 2001

O’Caml 3.04
dec 12, 2001

Tcl/Tk 8.3
october 22, 2001

Delphi 6
may 1, 2001

2000

VB.NET
(Visual Basic 7.0)

2001

ISE Eiffel 5
2001

Unicon
2001

Active Oberon
2001

colorForth
july 31, 2001

Ruby 1.6.7
march 1, 2002

Python 2.2.1
april 10, 2002

Perl 5.8.0
july 18, 2002

PHP 4.2.0
april 22, 2002

PHP 4.2.2
july 22, 2002

Java 2 (v1.4.0_01)
june 4, 2002

O’Caml 3.05
july 29, 2002

O’Caml 3.06
august 20, 2002

Java 2 (v1.4.1)
september 2002

PHP 4.2.3
september 6, 2002

Fortran 2000
(draft)

september 30, 2002

Tcl/Tk 8.4
september 10, 2002

Delphi 7
august 6, 2002

Self 4.1.6
september 2002

Python 2.2.2
october 14, 2002

PHP 4.3.0
december 27, 2002

2002

PHP 4.3.1
feb. 17, 2003

Ruby 1.6.8
december 24, 2002

Java 2
(v1.4.1_02)

february 27, 2003

Python 2.3a2
february 19, 2003

Tcl/Tk 8.4.1
october 22, 2002

C#
(ISO)

march 28, 2003

Tcl/Tk 8.4.2
march 3, 2003

Tcl/Tk 8.4.3
may 20, 2003

PHP 4.3.2
may 29, 2003

Python 2.2.3
may 30, 2003

Java 2 (v1.4.2)
april 29, 2003

COBOL 2002 ISO/ANSI
december 2002

JavaScript 2.0
(draft 4)

april 26, 2002

ECMAScript ed4 (draft)
2002

Haskell 98
(revised)

december 2002

Python 2.3
july 29, 2003

Java 2 (v1.4.1_03)
june 11, 2003

2003

PHP 4.3.3
august 25, 2003

Java 2 (v1.4.2_01)
august 26, 2003

Ruby 1.8
august 4, 2003

Python 2.3.1
september 23, 2003

Perl 5.8.1
september 26, 2003

Java 2 (v1.4.2_02)
october 22, 2003

C# 2.0
(beta)

july 2003

Delphi 8
november 2003

PHP 4.3.4
november 3, 2003

Java 2 (v1.4.2_03)
december 13, 2003

Python 2.3.2
october 3, 2003

Python 2.3.3
december 19, 2003

Ruby 1.8.1
december 25, 2003

Java 2 (v1.5.0) (beta 1)
feb. 5, 2004

O’Caml 3.07
september 29, 2003

Tcl/Tk 8.4.6
march 1, 2004

Self 4.2.1
april 3, 2004

PHP 4.3.5
march 26,

2004

Perl 5.8.2
november 5, 2003

Perl 5.8.3
january 1, 2004

Tcl/Tk 8.4.5
november 24, 2003

Tcl/Tk 8.4.4
july 22, 2003

PHP 4.3.6
april 15,

2004

Java 2 (v5.0) (beta 2)
june 28, 2004

Java 2 (v1.4.2_04)
march 8, 2004

Java 2 (v1.4.2_05)
june 30, 2004

PHP 4.3.7
june 3,
2004

Python 2.3.4
may 27, 2004

Perl 5.8.4
april 23, 2004

2004
PostScript level 3

v 3016
2003

C++03 ISO/IEC
2003

PHP 4.3.8
july 13, 2004

PHP 5.0.0
july 13, 2004

O’Caml 3.08.0
july 13, 2004

Java 2 (v5.0)
september 30, 2004

Python 2.4
november 30, 2004

PHP 4.3.10
december 15, 2004

PHP 5.0.3
december 15, 2004

Java 2 (v6.0 beta)
december 2004

Tcl/Tk 8.4.7
july 25, 2004

Tcl/Tk 8.4.8
nov. 22, 2004

Tcl/Tk 8.4.9
december 7, 2004

Ruby 1.8.2
december 25, 2004

Perl 5.8.5
july 21, 2004

Perl 5.8.6
november 30, 2004

Java 2 (v1.4.2_06)
november 23, 2004

Delphi 2005
november 2004

Fortran 2003
november 30, 2004

Java 2 (v5.0 update 3)
april 28, 2005

Ada 2006 (draft)
2005

2005

ECMA Eiffel
june 2005

Python 2.4.1
march 30, 2005

O’Caml 3.08.2
november 2004

Perl 5.8.7
june 3, 2005

PHP 5.0.4
april 3, 2005

PHP 5.0.5
september 6, 2005

PHP 4.4.1
october 31, 2005

Ruby 1.8.3
september 21, 2005

Python 2.4.2
september 28, 2005

Tcl/Tk 8.4.11
june 28, 2005

PostScript level 3
v 3017

september 11, 2005

C# 3.0
(beta)

september 2005

C# 2.0
november 2005

Tcl/Tk 8.4.12
december 6, 2005

Delphi 2006
october 30, 2005

Ruby 1.8.4
december 24, 2005

PHP 5.1.0
november 24, 2005

M ISO
january 6, 2005

Objective-C 2.0
august 7, 2006

2006

Tcl/Tk 8.4.13
april 19, 2006

Python 2.5
september 19, 2006

Java 2 (v5.0 update 8)
august 11, 2006

Ruby 1.8.5
august 25, 2006

Perl 5.8.8
february 2, 2006

PHP 5.1.6
august 24, 2006

PHP 4.4.2
january 13, 2006

PHP 4.4.4
august 17, 2006

O’Caml 3.09.2
april 14, 2006

Self 4.3
june 30, 2006

Scheme R6RS (draft)
september 14, 2006

Tcl/Tk 8.4.14
october 19, 2006

PHP 5.2.0
november 2, 2006

Java 6
december 11, 2006

Tcl/Tk 8.4.15
may 25, 2007

Python 2.5.1
april 19, 2007

Ruby 1.8.6
march 13, 2007

PHP 4.4.7
may 3, 2007

PHP 5.2.3
may 31, 2007

Java 2 (v5.0 update 12)
may 31, 2007

2007

Tcl/Tk 8.5
december 20, 2007

Java 6 update 2
july 5, 2007

O’Caml 3.10.0
may 16, 2007

Perl 5.10
december 18, 2007

Ada 2005
march 9, 2007

Python 3.0a2
december 7, 2007

PHP 5.2.4
august 30, 2007

PHP 5.2.5
november 9, 2007

Scheme R6RS
august 28, 2007

C# 3.5
november 19, 2007

Delphi 2007
march 2007

C# 3.0
november 6, 2006

2008

Java 6 update 7
july 11, 2008

Java 2 (v5.0 update 16)
july 11, 2008

Java 2 (v1.4.2_18)
july 11, 2008

Ruby 1.8.7
may 31, 2008

PHP 4.4.8
january 3, 2008

PHP 5.2.6
may 1, 2008

Tcl/Tk 8.5.5
october 15, 2008

Python 2.6
october 1, 2008

Python 3.0
december 3, 2008

PHP 4.4.9
august 7, 2008

O’Caml 3.10.2
february 29, 2008

Java 6 update 11
december 2, 2008

Java 2 (v1.4.2_19)
december 2, 2008

Java 2 (v5.0 update 17)
december 2, 2008

C++0x draft
2008

Ruby 1.9.1
january 30, 2009

PHP 5.2.7
december 4, 2008

PHP 5.2.8
december 8, 2008

Python 3.0.1
february 13, 2009

Python 2.6.1
december 4, 2008

2009

Tcl/Tk 8.5.6
january 2009

Tcl/Tk 8.5.7
april 15, 2009

Python 2.6.2
april 14, 2009

Java 6 update 14
june 10, 2009

Java 2 (v5.0 update 18)
march 24, 2009

PHP 5.2.9
february 26, 2009

O’Caml 3.11.0
december 4, 2008

PHP 5.3
june 30, 2009

Python 3.1
june 27, 2009

O’Caml 3.11.1
june 12, 2009

Delphi 2009
august 2008

Ruby 1.9.2 preview 1
july 18, 2009

C++1x draft
july 22, 2009

Objective-C 2.1
august 28, 2009

Perl 5.11.0
october 2, 2009

Python 2.6.3
october 2, 2009

Java 6 update 26
june 7, 2011

Java 2 (v5.0 update 21)
september 11, 2009

Delphi 2010
august 2009

Haskell 2010
(announced)

november 2009

Python 2.7
july 4, 2010

Tcl/Tk 8.5.9
september 8, 2010

Ruby 1.9.2
august 18, 2010

Perl 5.12.0
april 12, 2010

PHP 5.3.5
january 6, 2011

Haskell HP 2010.2.0.0
july 2010

O’Caml 3.12.0
august 2, 2010

Fortran 2008
september 2010

2010

C# 4.0
april 12, 2010

2011

Python 3.2
february 20, 2011

Python 2.7.1
november 27, 2010

Perl 5.14
june 8, 2011

Tcl/Tk 8.5.10
june 24, 2011

Python 3.2.1
july 11, 2011

Python 2.7.2
june 12, 2011

O’Caml 3.12.1
july 4, 2011

PHP 5.3.6
march 17, 2011

Java 7
july 28, 2011

ISO/IEC C++ 
(C++11)

august 12, 2011

Swift
2010

ECMAScript ed5
december 2009

ECMAScript ed5.1
june 2011

2012

ISO/IEC C (C11)
december 8, 2011

Tcl/Tk 8.5.11
november 4, 2011

Java 7 update 3
february 15, 2012

Ruby 1.9.3
october 31, 2011

PHP 5.4.0
march 1, 2012

Haskell HP 2011.4.0.0
december 2011

Tcl/Tk 8.5.12
july 27, 2012

Python 3.3.0
september 29, 2012

Java 7 update 7
august 30, 2012

Perl 5.16
may 20, 2012

Java 6 update 51
june 18, 2013

Ada 2012
december 15, 2012

Tcl/Tk 8.6.0
december 20, 2012

2013

Java 7 update 25
june 18, 2013

Python 3.3.2
may 15, 2013

Python 2.7.5
may 15, 2013

Ruby 2.0.0
february 24, 2013

PHP 5.5.1
july 18, 2013

Perl 5.18
may 18, 2013

OCaml 4.00.1
october 5, 2012

C# 5.0
august 15, 2012

2014

Tcl/Tk 8.6.3
november 12, 2014

Python 3.4.1
may 18, 2014

Python 3.3.3
november 13, 2013

Python 3.4.0
march 17, 2014

Java 7 update 72
october 14, 2014

Java 7 update 51
january 14, 2014

Java 8
march 18, 2014

Java 8 update 25
october 14, 2014

Java 6 update 81
july 15, 2014

Ruby 2.1.0
december 25, 2013

Ruby 2.1.4
october 27, 2014

PHP 5.6.4
december 18, 2014

Swift 1.0
september 9, 2014

Swift 1.1
october 22, 2014

ISO/IEC C++ (C++14)
december 15, 2014

Perl 5.20
may 27, 2014

OCaml 4.02.0
august 2014

OCaml 4.01.0
september 12, 2013

COBOL 2014 ISO/CEI
june 2014

Python 3.4.3
february 25, 2015

Java 8 update 51
july 14, 2015

2015

C# 6.0
july 20, 2015

Ruby 2.2.2
april 13, 2015

PHP 5.6.11
july 10, 2015

Swift 1.2
april 8, 2015

Tcl/Tk 8.6.4
march 12, 2015

Tcl/Tk 8.6.5
february 29, 2016

Tcl/Tk 8.6.6
july 27, 2016

Ada 2012 TC1
february 1, 2016

Perl 5.22
june 1, 2015

Perl 5.24
may 8, 2016

OCaml 4.03.0
april 2016

Python 3.5
septembre 13, 2015

2016

Swift 2.0
june 8, 2015

Swift 2.2
april 21, 2016

Swift 2.3
june 12, 2016

Swift 3.0
sept. 13, 2016

Java 8 update 92
april 19, 2016

Ruby 2.3
december 25, 2015

PHP 7.0
december 3, 2015

ECMAScript ed6
june 2015

ECMAScript ed7
june 2016

2017

Tcl/Tk 8.6.7
august 9, 2017

Perl 5.26
may 30, 2017

OCaml 4.04.2
june 23, 2017

OCaml 4.05.0
july 13, 2017

Python 3.6.3
october 3, 2017

Python 3.6.0
december 23, 2016

Swift 3.1
march 27, 2017

Swift 4.0
september 19, 2017

Java 9
september 21, 2017

C# 7.1
august 14, 2017

C# 7.0
march 2017

Ruby 2.4.2
sept. 14, 2017

Ruby 2.4
december 25, 2016

PHP 7.1
december 1, 2016

PHP 7.2
november 30, 2017

2018

Tcl/Tk 8.6.8
december 22, 2017

Python 3.7.0
june 27, 2018

Swift 4.1
april 29, 2018

C# 7.2
february 20, 2018

C# 7.3
may 7, 2018

Ruby 2.5.0
dec. 25, 2017

Ruby 2.5.1
march 28, 2018

Perl 5.26.1
september 22, 2017

Perl 6 2018,04
may 7, 2018

Perl 6 2018,06
june 27, 2018

OCaml 4.06.0
november 3, 2017

Java 10,0
april 20, 2018

ISO/IEC C++ (C++17)
december 1, 2017

Perl 5.30.0
may 22, 2018

ECMAScript ed8
june 2017

ECMAScript ed9
june 2018

ISO/IEC C (C17)
june 2018

OCaml 4.07.0
july 10, 2018

PHP 7.3
december 6, 2018

Java 11
september 25, 2018

2019

Tcl/Tk 8.6.9
november 16, 2018

Python 3.7.4
july 8, 2019

Swift 5.1
april 19, 2019

Swift 5
march 25, 2019

Ruby 2.6.3
april 17, 2019

Ruby 2.6
december 25, 2018

PHP 7.3.8
july 30, 2019

OCaml 4.08.0
june 14, 2019

Java 12
march 19, 2019

ECMAScript ed10
june 2019

Tcl/Tk 8.6.10
november 21, 2019

Python 3.8.0
october 14, 2019

Java 13
september 2019

Ruby 2.7.0
december 25, 2019

OCaml 4.09.0
september 18, 2019

C# 8.0
september 2019

2020

Python 3.9.0
october 5, 2020

Swift 5.2
march 24, 2020

Swift 5.3
september 16, 2020

Java 14
march 2020

Java 15
september 2020

ECMAScript ed11
june 2020

Ruby 3.0.0
december 25, 2020

PHP 7.4.12
october 29, 2020

Perl 5.32.0
june 21, 2020

OCaml 4.10.0
february 20, 2020

OCaml 4.11.0
august 19, 2020

C# 9.0
september 2020

https://www.levenez.com/lang/

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 24

https://www.levenez.com/lang/


Programming Languages
Why are there so many different PLs?

I Evolution
I Specialized problem domains
I Socio-economic factors

Are there less PLs in 2023 than in 1989?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 25



Programming Languages
Why are there so many different PLs?
I Evolution
I Specialized problem domains
I Socio-economic factors

Are there less PLs in 2023 than in 1989?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 25



Programming Languages
Why are there so many different PLs?
I Evolution
I Specialized problem domains
I Socio-economic factors

Are there less PLs in 2023 than in 1989?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 25



Programming Languages
What makes a PL successful?

I Easy to learn
I Easy to write programs (of interest)
I Easy to implement
I Compiles to good (fast/small) code
I Socio-economic factors

I Luck?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 26



Programming Languages
What makes a PL successful?
I Easy to learn
I Easy to write programs (of interest)
I Easy to implement
I Compiles to good (fast/small) code
I Socio-economic factors

I Luck?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 26



Programming Languages

What makes a “good” programming language?

Is there a “best” programming language?

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 27



Reminders
I First reading quiz (PL:BPC Preface, Acknowledgements, and Introduction)

due Fri. at 8:00AM

Arthur Azevedo de Amorim Programming Language Concepts Lecture 01 28


