
Programming Language Concepts
CSCI-344
Term 20235

Programming 5

Type Systems

1 Introduction
In this programming assignment, you will extend the type checker for Typed Impcore (relatively easy) and build the
type checker for Typed µScheme (relatively hard).

This programming assignment must be completed as a pair programming assignment; see [WK00] for useful guidelines
on pair programming.

2 Description
Complete the following problems. See Requirements and Submissions for important restrictions.

A. (20pts) Complete Exercise 18 of Chapter 6 from Programming Languages: Build, Prove, and Compare (p. 394). The
exercise asks you to complete the type checker for Typed Impcore by implementing the rules for array operations.
You will modify the provided timpcore.sml interpreter.

You need only complete the four cases of the ty function (within the typeof function) that currently raise
LeftAsExercise exceptions (lines 1591–1594). You should not need to modify any other part of the interpreter (but
you will need to read other parts of the interpreter, particularly the datatype ty definition (lines 1321–1325), which
gives the SML representation of Typed Impcore types). A reasonable solution is 30 to 70 lines of SML, depending
on the quality of the error messages (but high quality error messages are not required for this assignment).

Tips, Advice, and Hints:

• Although most of the existing cases of the ty function use eqType to compare the type of a subexpression with
the required type of the subexpression, this approach will not work if the required type of the subexpression
is an array type and you do not know the type of the elements of the array. Instead, you will need to use case
expressions to match the type of a subexpression against ARRAYTY t in order both check that the type of the
subexpression is an array type and to extract the type of the elements.

• Review the solution to the problem of adding lists to Typed Impcore from Recitation 06.

B. (145pts) Complete Exercises 19 and 28 of Chapter 6 from Programming Languages: Build, Prove, and Compare
(pp. 395–396 and pp. 397–398). The exercises asks you to write the type checker for Typed µScheme and to
implement renaming of type variables to avoid capture. You will modify the provided tuscheme.sml interpreter.

You need to complete the renameForallAvoiding function that currently raises a LeftAsExercise exception,
all cases of the ty function (within the typeof function) that currently raise LeftAsExercise exceptions and
all cases of the typdef function that currently raise LeftAsExercise exceptions. You should not need to
modify any other part of the interpreter (but you will need to read other parts of the interpreter, particu-
larly the datatype tyex definition (lines 1342–1347), which gives the SML representation of Typed µScheme
type-level expressions, and the datatype exp, datatype value, and datatype def definitions (lines 1518–1530,
lines 1535–1542, and lines 1547–1551), which give the SML representation of Typed µScheme expressions, values,
and definitions). A reasonable solution is 150 to 200 lines of SML, depending on the quality of the error messages
(but high quality error messages are not required for this assignment).

Tips, Advice, and Hints:

• Don’t copy and paste the Typed Impcore typeof and elabdef functions into Typed µScheme; there are too
many details to change to make it worthwhile. Use the structure as a guide, but start from scratch.

• Compile early and compile often!

• Test early and test often! Be sure to test with both examples that should type check and examples that should
not type check.

1



• Build the type checker one piece at a time:

– First, write code to type check LITERAL/NUM, LITERAL/BOOLV, and LITERAL/SYM.

∗ At this point, “programs” like 1 and #t still will not type check, because VAL and EXP definitions do
not yet type check.

– Next, type check VAL. (Because EXP is just syntactic sugar for VAL, this will also type check EXP.)

∗ At this point, “programs” like (val ans 1) and (val ans #t) should type check.

– Next, type check IFX.

∗ At this point, “programs” like (val ans (if #t -1 1)) and (val ans (if #f -1 1)) should type
check.

– Next, type check VAR.

∗ At this point, “programs” like (val x #t) (val y -1) (val z 1) (val ans (if x y z)) should
type check.

– Next, type check SET, BEGIN, and WHILE.

– Next, type check LETX/LET. Be careful with the environments; be sure to type check sub-expressions with
the right environment.

– Next, type check LETX/LETSTAR (by treating it as syntactic sugar for nested LETs).

– Next, type check LAMDBA (which is quite similar to LETX/LET). To create a function type, use the FUNTY
constructor of the tyex datatype.

– Next, type check APPLY. Pattern match against the FUNTY constructor of the tyex datatype to simulta-
neously determine if a type is a function type and to extract the argument types and the result type of
the function type.

– Next, type check VALREC and DEFINE (remembering that DEFINE is syntactic sugar for VALREC).

– Next, type check LETRECX.

– Next, type check LITERAL/NIL and LITERAL/PAIR. Remember that the empty list literal is polymorphic,
but non-empty list literals are monomorphic.

– Next, type check TYLAMBDA. Don’t forget to check the restriction that a type-lambda may not abstract
over a type variable that’s free in the type environment.

– Finally, implement renameForallAvoiding and type check TYAPPLY.

The specification for renameForallAvoiding is

renameForallAvoiding([α1, . . . , αn], τ, C) must return a type ∀β1, . . . , βn. τ ′ with these proper-
ties:

∀β1, . . . , βn. τ ′ ≡ ∀α1, . . . , αn. τ

{β1, . . . , βn} ∩ C = ∅

Both τ and τ ′ are type expressions, corresponding to the SML tyex type (defined on p. 357 and
lines 1342–1347). When renameForallAvoiding([α1, . . . , αn], τ, C) returns ∀β1, . . . , βn. τ ′, both τ and τ ′

will have the same “shape” (e.g., if τ was a function type (FUNTY), then τ ′ will also be a function type).
The difference between τ and τ ′ is that if τ uses some type variable αi that is in the set C (the set of
type variables that we want to “avoid”), then τ ′ replaces that αi by some type variable βi that is chosen
to not conflict with any of the type variables in C (and is different from all of the other βs).

2



For example:

renameForallAvoiding(["'a","'b","'c"],
FUNTY([TYVAR "'a",TYVAR "'b",TYVAR "'d"],TYVAR "'e"),
["'a","'c","'e"])

where (using Typed µScheme syntax for readability)

[α1, α2, α3] = ['a, 'b, 'e]
τ = ('a 'b 'd -> 'e)
C = ['a, 'c, 'e]

might return

FORALL(["'f","'b","'g"],FUNTY([TYVAR "'f",TYVAR "'b",TYVAR "'d"],TYVAR "'g"))

where (using Typed µScheme syntax for readability)

[β1, β2, β3] = ['f, 'b, 'g]
τ ′ = ('f 'b 'd -> 'g)

Note that 'a was replaced by 'f and 'e was replaced by 'g, but 'b was left alone.

We can’t replace 'a

∗ by 'b, because that would violate both “is not free in τ” (because ftv(('a 'b 'd -> 'e)) =
{'a, 'b, 'd, 'e}) and “is different from every αi”.

∗ by 'c, because that would violate “must be a new variable that does not appear in C”.

∗ by 'd, because that would that would violate “is not free in τ”.

∗ by 'e, because that would violate all of “must be a new variable that does not appear in C”, “is not
free in τ”, and “is different from every αi”.

So, the first type variable that satisfies all of the conditions is 'f.

On the other hand, we can leave 'b alone, because 'b does not appear in C.

We can’t replace 'e

∗ by 'a, because that would violate all of “must be a new variable that does not appear in C”, “is not
free in τ”, and “is different from every αi”.

∗ by 'b, because that would violate both “is not free in τ” and “is different from every αi”.

∗ by 'c, because that would violate “must be a new variable that does not appear in C”.

∗ by 'd, because that would that would violate “is not free in τ”.

∗ by 'f, because that would violate the implicit assumption that every βi is different (and 'f was chosen
for β1).

So, the first type variable that satisfies all of the conditions is 'g.

Hint: The code for renameForallAvoiding is somewhat simpler than might be implied by the above.
The essence is that for each αi that must be replaced, construct an appropriate set of type variables to
avoid and call freshName.

Hint: There is a reason that renameForallAvoiding is defined within the body of tysubst, rather than
before the definition of tysubst. What function is in scope when renameForallAvoiding is defined
within the body of tysubst that would not be in scope if renameForallAvoiding was defined before the
definition of tysubst?

• Reread Section 6.6 of Programming Languages: Build, Prove, and Compare, paying special attention to the
useful functions and representations that are already implemented in the interpreter.

• Do not use SML’s polymorphic equality (the = operator) to compare types. SML’s polymorphic equality
compares values for structural equality. Use the provided eqType function to compare types. More details
about the eqType function may be found in Section 6.6.6 of Programming Languages: Build, Prove, and
Compare.

3



C. (bonus 20pts) Complete Exercises 11 and 12 of Chapter 6 from Programming Languages: Build, Prove, and Compare
(p. 390). The exercises asks you to implement the pair and sum type constructors and the polymorphic functions
pair, fst, snd, left, right, and either without changing the abstract syntax, values, type checker, or evaluator
of Typed µScheme. You will modify the provided tuscheme.sml interpreter.

You need only add to the kinds (∆), types (Λ), and values (ρ) components of the val primBasis definition
(lines 2815–2957).

These extensions are similar in spirit to the technique described in the last problem of Recitation 07. In fact,
the Typed µScheme interpreter has already been extended with the btree type constructor and the polymorphic
functions leaf, node, leaf?, node?, node-l, node-x, node-r.

2.1 Interpreter Source Code
Source code for the interpreters is available on the CS Department file system at:

/usr/local/pub/mtf/plc/programming/prog05-typesys

and packaged as an archive at:

/usr/local/pub/mtf/plc/programming/prog05-typesys.tar

Note that this source code contains just the SML code from the textbook, with simple comments identifying page
numbers. There is a Makefile for building the interpreters and running tests.

Copy the interpreter source code to a local directory and make modifications to your local copy; for example, execut-
ing

$ tar xvf /usr/local/pub/mtf/plc/ programming /prog05 - typesys .tar

will copy the interpreter source code to a new local directory named prog05-typesys.

2.2 Tests
The prog05-typesys/tests directory contains a number of tests for the Typed Impcore and Typed µScheme type
checkers, as well as scripts for running the tests.

For example, executing

$ make timpcore -tests.out

from your prog05-typesys directory will build your Typed Impcore interpreter and run the Typed Impcore tests; the
test results will be echoed to the terminal and also saved in the timpcore-tests.out file.

For each test.imp file, if the test has no type errors, then there is a test.soln.tychk file containing the output of
the reference interpreter (the name and/or value defined by each declaration and the type of the defined name and/or
value). If the test has type errors, then there is a test.soln.tyerr file containing the output of the reference interpreter,
concluding with the type error message reported by the reference solution type checker.

Similarly, executing

$ make tuscheme -tests.out

from your prog05-typesys directory will build your Typed µScheme interpreter and run the Typed µScheme tests; the
test results will be echoed to the terminal and also saved in the tuscheme-tests.out file.

For each test.scm file, if the test has no type errors, then there is a test.soln.tychk file containing the output of
the reference interpreter (the name and/or value defined by each declaration and the type of the defined name and/or
value). If the test has type errors, then there is a test.soln.tyerr file containing the output of the reference interpreter,
concluding with the type error message reported by the reference solution type checker.

2.3 Reference Interpreters
Reference Typed Impcore and Typed µScheme interpreters are available on the CS Department Linux systems (e.g.,
glados.cs.rit.edu and queeg.cs.rit.edu and ICLs 1 and 2) at:

/usr/local/pub/mtf/plc/bin/timpcore

4



and

/usr/local/pub/mtf/plc/bin/tuscheme

Use the reference interpreters to develop tests and to check your interpreters.

3 Requirements and Submission
Always use pattern matching to inspect and deconstruct values. The use of null, hd, tl, #1, #2, etc., will result in zero
credit for the assignment.

Your modified interpreters must be a valid Standard ML program. In particular, they must compile with Moscow ML
or MLton without any error messages. If your submission produces error messages (e.g., syntax errors or type errors),
then your submission will not be tested and will result in zero credit for the assignment.

Write a README.txt file. Your README.txt file should be formatted as follows:

Names:
Time spent on assignment :
Additional Collaborators :

Submit README.txt, timpcore.sml, and tuscheme.sml to the Programming 05 Dropbox on MyCourses by the due date.
Only one submission is required per group.

References
[WK00] Laurie A. Williams and Robert R. Kessler. All I Really Need to Know About Pair Programming I Learned

in Kindergarten. Communications of the ACM, 43(5):108–114, May 2000. http://doi.acm.org/10.1145/
332833.332848.

5


	Introduction
	Description
	Interpreter Source Code
	Tests
	Reference Interpreters

	Requirements and Submission

