
Programming Language Concepts
CSCI-344
Term 20235

Programming 6

Smalltalk Programming

1 Introduction
In this programming assignment, you will implement a number of classes and methods in µSmalltalk in order to gain
familiarity with the language and to practice object-oriented programming.

Download prog06.smt, prog06_tests.smt, and prog06_tests.soln.out (or copy from
/usr/local/pub/mtf/plc/programming/prog06-smalltalk on the CS Department Linux systems). The first is
a template for your submission and also includes a number of supporting classes. The second is a test suite for the
assignment and the third is reference solution’s output on the test suite.

2 Description
This assignment investigates writing µSmalltalk classes that represent immutable, space-efficient vectors, which we
call “xvectors”. Complete the definitions of the abstract class XVector and its concrete sub-classes ArrayXVector,
ConcatXVector, RepeatXVector, ReverseXVector, SwizzleXVector, and BlockXVector to provide the protocols spec-
ified in Figures 1, 2, and 3. (Note: These classes represent space-efficient vectors. Hence, they should not unnecessarily
allocate new data. The trade-off is that the at: method on xvectors is typically not O(1).)

See Requirements and Submissions for important restrictions.

1

XVector instance protocol
display methods
print Print the receiver on standard output; an xvector is printed as <<, a space

character, the elements of the receiver separated by spaces, a space character,
and >>.

debug Print a representation of the xvector on standard output; the representa-
tion is constructed from the name of the receiver’s class, an open parenthe-
sis, the arguments used to construct the receiver (separated by commas),
and a close parenthesis; any xvector arguments used to construct the re-
ceiver are printed using debug; non-xvector arguments used to construct
the receiver are printed using print. (subclass responsibility) (10pts)
Note: The initial basis of the µSmalltalk interpreter includes global vari-
ables newline, space, semicolon, quotemark, left-round, right-round,
left-square, right-square, left-curly, and right-curly, which are bound
to objects of class Char that represent the new line character, the space char-
acter, the semicolon character “;”, the quote character “'”, the left parenthe-
sis character “(”, the right parenthesis character “)”, the left square bracket
character “[”, the right square bracket character “]”, the left curly brace char-
acter “{”, and the right curly brace character “}”. Such characters are useful
for printing (send them the print message), but cannot be expressed using
µSmalltalk’s literal symbol notation.

observer methods
isEmpty Answer whether the receiver has any elements. (like the corresponding

Collection method)
size Answer how many elements the receiver has. (like the corresponding

Collection method) (subclass responsibility) (10pts)
at: anIndex Answer the element at position anIndex, or report the error

index-out-of-bounds if the position anIndex is out of bounds. A non-negative
position counts forward from the start of the xvector (i.e., (xvector at: 0)
answers the first element); a negative position counts backward from the end
of the xvector (i.e., (xvector at: -1) answers the last element).

at:ifAbsent: anIndex exnBlock Answer the element at position anIndex or the result of evaluating exnBlock
if the position anIndex is out of bounds. (see at: method comments) (10pts)

includes: anObject Answer whether the receiver has anObject; uses = to compare anObject to
elements. (like the corresponding Collection method)

occurrencesOf: anObject Answer how many of the receiver’s elements are equal to anObject; uses = to
compare anObject to elements. (like the corresponding Collection method)

detect: aBlock Answer the first element x in the receiver for which (aBlock value: x) is
true, or report the error no-object-detected if none. (like the corresponding
Collection method)

detect:ifNone: aBlock exnBlock Answer the first element x in the receiver for which (aBlock value: x) is true
or answer (exnBlock value) if none.

sum Answer the sum of the elements in the receiver; assumes all elements are mem-
bers of the same Number subclass and answers an Integer if the receiver is
empty. (5pts)

product Answer the product of the elements in the receiver; assumes all elements are
members of the same Number subclass and answers an Integer if the receiver
is empty. (5pts)

min Answer the minimum element in the receiver or report the error min-of-empty
if the receiver is empty; assumes all elements are members of the same
Magnitude subclass. (5pts)

max Answer the maximum element in the receiver or report the error max-of-empty
if the receiver is empty; assumes all elements are members of the same
Magnitude subclass. (5pts)

Figure 1: XVector instance protocol

2

XVector instance protocol (continued)
iterator methods
do: aBlock For each element x of the receiver (in order of increasing position), evaluate

(aBlock value: x). (like the corresponding Collection method) (10pts)
inject:into: aValue binaryBlock

Evaluates binaryBlock once for each element in the receiver. The first argu-
ment of the block is an element from the receiver; the second argument is the
result of the previous evaluation of the block, starting with aValue. Answer
the final value of the block. (like the corresponding Collection method)

comparison methods
= anObject Answers whether the receiver is equal to anObject; an xvector is not equal to

an object that is not an instance of XVector and two xvectors are equal if they
have the same size and elements of corresponding positions are equal. (like the
corresponding Collection method) (10pts)

< anXVector Answers whether the receiver is less than the argument; xvectors are com-
pared via lexicographic order; assumes all elements are members of the same
Magnitude subclass. (like the corresponding Magnitude method) (10pts)

> anXVector Answers whether the receiver is greater than the argument. (see < method
comments; like the corresponding Magnitude method)

<= anXVector Answers whether the receiver is no greater than the argument. (see < method
comments; like the corresponding Magnitude method)

>= anXVector Answers whether the receiver is no less than the argument. (see < method
comments; like the corresponding Magnitude method)

min: anXVector Answer the lesser of the receiver and anXVector. (see < method comments;
like the corresponding Magnitude method)

max: anXVector Answer the greater of the receiver and anXVector. (see < method comments;
like the corresponding Magnitude method)

producer methods
+ anXVector Answer an xvector that represents the concatenation of the receiver and

anXVector.
* anInteger If anInteger is non-negative, answer an xvector that rep-

resents anInteger concatenations of the receiver. If
anInteger is negative, report the error negative-repeat.
(There may be opportunities to override this method in a subclass; ex-
plain your reasoning in a comment at the overriding method implementation.
Note: Remember that these classes represent space-efficient vectors. An
overriding implementation should not allocate more data than the generic
superclass implementation and should make the answered xvector more
efficient for (some) operations than the xvector answered by the generic
superclass implementation. (bonus 3pts))

reverse Answer an xvector that represents the reversal of the receiver.
(There may be opportunities to override this method in a subclass; ex-
plain your reasoning in a comment at the overriding method implementation.
(see * method comments) (bonus 3pts))

fromIndex:toIndex: aStartIndex anEndIndex
Answer an xvector that represents the elements of the receiver from posi-
tion aStartIndex to position anEndIndex (inclusive). If position aStartIndex
comes after position anEndIndex in the receiver, then the answered xvec-
tor has elements from the end of the receiver followed by elements from
the start of the receiver (i.e., the slice “wraps around”). If either position
aStartIndex or position anEndIndex are out of bounds, then report the error
report the error index-out-of-bounds. (see at: method comments) (10pts)
(There may be opportunities to override this method in a subclass; explain
your reasoning in a comment at the overriding method implementation. (see
* method comments) (bonus 3pts))

private methods (internal to XVector classes)
elem: anIndex Answer the element at position anIndex; assumes that the position anIndex is

non-negative and within bounds. (subclass responsibility) (10pts)

Figure 2: XVector instance protocol (continued)

3

ArrayXVector class protocol
withArr: anArray Create and answer an xvector that holds the elements of anArray; since an

xvector is immutable, the elements of anArray must be copied at the time of
construction.

ConcatXVector class protocol
withXV1:withXV2: anXVector1 anXVector2

Create and answer an xvector that represents the concatenation of anXVector1
and anXVector2. (2pts)

RepeatXVector class protocol
withXV:withN: anXVector anInteger

If anInteger is non-negative, create and answer an xvector that represents
anInteger concatenations of anXVector. If anInteger is negative, report the
error negative-repeat-count. (2pts)

ReverseXVector class protocol
withXV: anXVector Create and answer an xvector that represents the reversal of anXVector. (2pts)

SwizzleXVector class protocol
withXV1:withXV2: anXVector1 anXVector2

Create and answer an xvector that represents the swizzle of anXVector1 and
anXVector2: the first element of the swizzle is the first element of anXVector1,
the second element of the swizzle is the first element of anXVector2, the third
element of the swizzle is the second element of anXVector1, the fourth element
of the swizzle is the second element of anXVector2, and so on. If anXVector1
and anXVector2 are of unequal lengths, then the swizzle concludes with the
excess elements from the longer one. (2pts)

BlockXVector class protocol
withN:withBlock: anInteger aBlock

If anInteger is non-negative, create and answer an xvector that is of size
anInteger and the element at position i is obtained by (aBlock value: i).
aBlock may assume that it will only be evaluated with indices i such
that 0 ≤ i < anInteger. If anInteger is negative, report the error
negative-block-size. (2pts)

Figure 3: XVector sub-classes class protocols

4

3 Requirements and Submission
Your submission must be a valid µSmalltalk program. In particular, it must pass the following test:

$ cat prog06 .smt | /usr/local/pub/mtf/plc/bin/ usmalltalk -q > /dev/null

without any error messages. If your submission produces error messages (e.g., syntax errors), then your submission will
not be tested and will result in zero credit for the assignment.

Submit prog06.smt to the Programming 06 Dropbox on MyCourses by the due date.

4 Hints
• Remember to double-check ifTrue:ifFalse: message sends; the receiver must be a Boolean object and the two

arguments must be (nullary) blocks.

• Remember to double-check whileTrue: message sends; the receiver must be a (nullary) block (that answers a
Boolean object) and the argument must be a (nullary) block.

• You may (and should) add instance variables to the concrete sub-classes.

• You may define additional (private) helper methods.

• You may define additional classes.

• Note that the do: method is a concrete method of the XVector superclass. This is different from the Collection
hiearchy, where the do: method is an abstract method of the Collection superclass.

• Note that the sum and product methods assume that all elements of the receiver are elements of the same Number
subclass. Thus, these methods should work on xvector’s of SmallInteger, Fraction, and Float. An inelegant
solution uses isKindOf: to dynamically determine the specific Number subclass. An elegant solution uses the
coerce: method of the Number protocol.

• Note that the min and max methods assume that all elements of the receiver are elements of the same Magnitude
subclass. Thus, these methods should work on xvector’s of SmallInteger, Fraction, and Float. Also, note that
the methods report an error if the receiver is empty. So, the meaningful computation of the minimum or maximum
element will only proceed when the receiver is non-empty.

• Note that the argument of the = method can be an arbitrary object. It would be appropriate to use the isKindOf:
method to determine if the argument is an xvector and then proceed to comparing elements. Be sure to use = to
compare elements, not ==. Note that xvectors of different sizes are never equal.

• Note that the < compares the receiver and argument xvectors via lexicographic comparison. Lexicographic order
is “dictionary order”. In particular, << -6 -5 -4 >> is less than << 1 >> and << 1 >> is less than << 6 5 4 >>.

5

• Note that the fromIndex:toIndex: method of XVector and the constructors for the sub-classes of XVector should
not explicitly construct a data structure proportional in size to the created vector. This is perhaps best exemplified
by the following transcript:
-> (val xv (ArrayXVector withArr : '(1 2 3 4 5)))
<< 1 2 3 4 5 >>
-> (val rxv1 (RepeatXVector withXV : withN : xv 9))
<< 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 >>
-> (size rxv1)
45
-> (at: rxv1 0)
1
-> (at: rxv1 4)
5
-> (at: rxv1 5)
1
-> (at: rxv1 9)
5
-> (val rxv2 nil)
nil
-> (begin (set rxv2 (RepeatXVector withXV : withN : xv 9999)) nil)
nil
-> (rxv2 size)
49995
-> (rxv2 at: 0)
1
-> (rxv2 at: 4)
5
-> (rxv2 at: 5)
1
-> (rxv2 at: 9)
5
-> (rxv2 at: 4321)
2

How can you efficiently compute the size of rxv2 without explicitly constructing a 49995 element data structure,
knowing that rxv2 was constructed from xv and a repeat count of 9999? How can you efficiently determine the
element at index 4321 of rxv2?

6

A Interpreter
A reference µSmalltalk interpreter is available on the CS Department Linux systems (e.g., glados.cs.rit.edu and
queeg.cs.rit.edu and ICLs 1 and 2) at:

/usr/local/pub/mtf/plc/bin/usmalltalk

Use the reference interpreter to check your code.

Source code for the interpreter is available on the CS Department file system at:

/usr/local/pub/mtf/plc/src/bare/usmalltalk

B Test Suite
Executing
$ cat prog06 .smt prog06_tests .smt | /usr/ local /pub/mtf/plc/bin/ usmalltalk -qq > prog06_tests .out

will run the interpreter on the contents of the files prog06.smt and prog06_tests.smt (all tests) without prompts or
responses printed and save the output to the file prog06_tests.out; then executing

$ diff prog06_tests .soln.out prog06_tests .out

will compare the files prog06_tests.soln.out and prog06_tests.out and print any differences.

Similarly, executing
$ cat prog06 .smt util.smt A-at: ifAbsent :. smt | /usr/ local /pub/mtf/plc/bin/ usmalltalk -qq > A-at: ifAbsent :. out

will run the interpreter on the contents of the files prog06.smt, util.smt, and A-at:ifAbsent:.smt (an individual
test file) without prompts or responses printed and save the output to the file A-at:ifAbsent:.smt.out; then execut-
ing

$ diff A-at: ifAbsent :. soln.out A-at: ifAbsent :. out

will compare the files A-at:ifAbsent:.soln.out and A-at:ifAbsent:.soln.out and print any differences.

Note: Due to the interdependencies between the classes and methods of the assignment, it is not easy to test individual
pieces of functionality in isolation. You will probably find the test suite most helpful after you have a mostly completed
assignment, when you can use the test suite to discover and diagnose any minor errors or missing corner cases. You will
probably not find it helpful to use the test suite as the guiding force for completing the assignment.

The best suggestion is to use the system interactively to debug one method at a time.

Note: Most of the .soln.out files are simply All 6 tests passed., but a small number include lines like
(debug cxv01) --> ConcatXVector(ArrayXVector(()),ArrayXVector(())), which demonstrates the behavior of
the debug method.

7

	Introduction
	Description
	Requirements and Submission
	Hints
	Interpreter
	Test Suite

