
Programming Language Concepts
CSCI-344
Term 20235

Programming 7

Prolog Programming

1 Introduction
In this programming assignment, you will implement a number of predicates in µProlog in order to gain familiarity with
the language and to practice logic programming.

Download prog07.P and prog07_tests.P. The former is a template for your submission and also includes a number of
supporting rules. The latter is a test suite for the assignment.

2 Description
Complete the following problems. Each one is to define one or more µProlog predicates. See Requirements and Submis-
sions for important restrictions.

A. (5pts) Write a predicate sum (of arity 2) such that sum(L,N) succeeds when the number N is the sum of the elements
in list L. (The sum of the empty list is 0.) The first argument may be assumed to always be instantiated with a
ground term when sum is used in a query. Thus, sum behaves like a function from its first argument to its second
argument.

Here are some sample interactions with the sum predicate:

?- sum ([1 ,2 ,3 ,4 ,5] , N).
N = 15;

no
?- sum ([], N).
N = 0;

no

B. (5pts) Write a predicate prod (of arity 2) such that prod(L,N) succeeds when the number N is the product of the
elements in the list L. (The product of the empty list is 1.) The first argument may be assumed to always be
instantiated with a ground term when prod is used in a query. Thus, prod behaves like a function from its first
argument to its second argument.

Here are some sample interactions with the prod predicate:

?- prod ([1 ,2 ,3 ,4 ,5] , N).
N = 120;

no
?- prod ([], N).
N = 1;

no

1



C. (5pts) Write a predicate avg (of arity 2) such that avg(L,N) succeeds when the number N is the average of the
elements in the list L. (The predicate avg should be unsatisfiable when the first argument is the empty list.) The
first argument may be assumed to always be instantiated with a ground term when avg is used in a query. Thus,
avg behaves like a function from its first argument to its second argument.

Note: Since µProlog does not support non-integer arithmetic, the number N is technically the floor of the arithmetic
mean of the elements of the list L.

Here are some sample interactions with the avg predicate:

?- avg ([1 ,2 ,3 ,4 ,5] , N).
N = 3;

no
?- avg ([], N).
no

D. (5pts) Write a predicate swizzle (of arity 3) such that swizzle(L1,L2,L3) succeeds when L3 is a list with the
first element of the list L1 as the first element, the first element of the list L2 as the second element, the second
element of the list L1 as the third element, the second element of the list L2 as the fourth element, and so on. If
the lists L1 and L2 are of unequal lengths, then the list L3 concludes with the excess elements from the tail of the
longer one.

Here are some sample interactions with the swizzle predicate:

?- swizzle ([1 ,2 ,3] ,[a,b,c],L).
L = [1, a, 2, b, 3, c];

no
?- swizzle ([1 ,2 ,3] ,[a,b,c,d,e,f],L).
L = [1, a, 2, b, 3, c, d, e, f];

no
?- swizzle (L1 ,L2 ,[a,b,c,d,e,f]).
L1 = []
L2 = [a, b, c, d, e, f];

L1 = [a, b, c, d, e, f]
L2 = [];

L1 = [a]
L2 = [b, c, d, e, f];

L1 = [a, c, d, e, f]
L2 = [b];

L1 = [a, c]
L2 = [b, d, e, f];

L1 = [a, c, e, f]
L2 = [b, d];

L1 = [a, c, e]
L2 = [b, d, f];

no

2



E. (5pts) Write a predicate partition (of arity 2) such that partition(L, P) is satisfied when the list of lists P is a
partitioning of the list L. (A partitioning of a list L is a list of (non-empty) lists such that the concatenation of the
lists of lists is the list L).

Here are some sample interactions with the partition predicate:

?- partition ([1 ,2 ,3 ,4] , P).
P = [[1] , [2], [3], [4]];

P = [[1] , [2], [3, 4]];

P = [[1] , [2, 3], [4]];

P = [[1] , [2, 3, 4]];

P = [[1, 2], [3], [4]];

P = [[1, 2], [3, 4]];

P = [[1, 2, 3], [4]];

P = [[1, 2, 3, 4]];

no
?- partition ([], P).
P = [];

no
?- partition (L, [[1] ,[2] ,[3 ,4 ,5]]).
L = [1, 2, 3, 4, 5];

no
?- partition (L, [[1 ,2] ,[] ,[3 ,4 ,5]]).
no

Hint: Note that a list can have multiple partitions, but a partition corresponds to at most one list. Thus, partition
behaves like a (partial) function from its second argument to its first argument. Organize the logic for partition
to exploit this.

3



F. (bonus 5pts) Write a predicate balanced_partition (of arity 2) such that balanced_partition(L, P) is satisfied
when the list of lists P is a balanced partitioning of the list L. (A partitioning of a list L is a balanced partitioning
if all of the lists in the partitioning differ in length by no more than one.)

Here are some sample interactions with the partition predicate:

?- balanced_partition ([1 ,2 ,3 ,4 ,5] ,P).
P = [[1] , [2], [3], [4], [5]];

P = [[1] , [2], [3], [4, 5]];

P = [[1] , [2], [3, 4], [5]];

P = [[1] , [2, 3], [4], [5]];

P = [[1] , [2, 3], [4, 5]];

P = [[1, 2], [3], [4], [5]];

P = [[1, 2], [3], [4, 5]];

P = [[1, 2], [3, 4], [5]];

P = [[1, 2], [3, 4, 5]];

P = [[1, 2, 3], [4, 5]];

P = [[1, 2, 3, 4, 5]];

no
?- balanced_partition ([],P).
P = [];

no
?- balanced_partition (L, [[1] ,[2] ,[3 ,4 ,5]]).
no

G. (10pts) Complete Exercise 16 of Appendix D from Programming Languages: Build, Prove, Compare (Supplement)
(p. S103), except that the predicate should be named msort (rather than msorted). The first argument may be
assumed to always be instantiated with a ground term when msort is used in a query. Thus, msort behaves like a
function from its first argument to its second argument.

Hint: You will need to introduce auxiliary predicates to implement splitting the list and merging two sorted lists.

Hint: msort requires two base cases: the empty list and the singleton list (because splitting a singleton list would
result in an empty list and a singleton list). And remember to make the rules for the base cases and the non-base
case mutually exclusive (so that backtracking after using a base case cannot continue and use the non-base case).

4



The following three problems investigates writing Prolog predicates that manipulate binary trees.

To represent binary trees, we use the following functors:

• leaf (a nullary functor): leaf represents the empty binary tree.
• node (a functor of arity 3): node(BTL,X,BTR) represents the binary tree that has BTL as an immediate left sub-tree,

has X as the element, and has BTR as an immediate right sub-tree.

For example, the binary tree:

30

33

1000

••

99

••

20

•9

••

is represented by the structure

node(node(node(leaf ,9, leaf ),20, leaf),
30,
node(node(leaf ,99, leaf ),33, node(leaf ,1000 , leaf )))

H. (5pts) Write a predicate btreeHeight such that btreeHeight(BT,N) succeeds when the number N is the height of
the binary tree BT. A leaf binary tree has height zero, while a node binary tree has height one greater than the
maximum of the heights of its immediate sub-trees. The first argument may be assumed to always be instantiated
with a ground term when btreeHeight is used in a query. Thus, btreeHeight behaves like a function from its
first argument to its second argument.

Here are some sample interactions with the btreeHeight predicate:

?- btreeHeight (leaf ,N).
N = 0;

no
?- btreeHeight (node(leaf ,30, leaf),N).
N = 1;

no
?- btreeHeight (node(node(node(leaf ,9, leaf ),20, leaf),

30,
node(node(leaf ,99, leaf ),33, node(leaf ,1000 , leaf ))),

N).
N = 3;

no

5



I. (5pts) Write a predicate btreeHighest such that btreeHighest(BT,X) succeeds when X is an element of the binary
tree BT that occurs at maximal height. The first argument may be assumed to always be instantiated with a ground
term when btreeHighest is used in a query. Thus, btreeHighest behaves like a function from its first argument
to its second argument.

Here are some sample interactions with the btreeHighest predicate:

?- btreeHighest (leaf ,X).
no
?- btreeHighest (node(node(node(leaf ,9, leaf ),20, leaf),

30,
node(node(leaf ,99, leaf ),33, node(leaf ,1000 , leaf ))),

X).
X = 9;

X = 99;

X = 1000;

no

6



J. (5pts) Write a predicate btreeInternal such that btreeInternal(BT,IBT) succeeds when the binary tree IBT
is an internal tree of the binary tree BT. Either of the arguments may be instantiated with a variable when
btreeInternal is used in a query.

An internal tree IBT of a binary tree T is itself a (possibly empty) binary tree that is a contiguous set of elements
from the binary tree T . Visually, one may “see” the internal tree IBT in the binary tree T , in the sense that the
nodes of IBT correspond to the nodes of T , except that where IBT has leaves, T may have nodes.

Here are some sample interactions with the btreeInternal predicate:
?- btreeInternal (node(node(node(leaf ,9, leaf ),20, leaf),

30,
node(node(leaf ,99, leaf ),33, node(leaf ,1000 , leaf ))),

IBT ).
IBT = leaf;

IBT = node(leaf , 30, leaf );

IBT = node(leaf , 30, node(leaf , 33, leaf ));

IBT = node(leaf , 30, node(leaf , 33, node(leaf , 1000 , leaf )));

IBT = node(leaf , 30, node(node(leaf , 99, leaf), 33, leaf ));

IBT = node(leaf , 30, node(node(leaf , 99, leaf), 33, node(leaf , 1000 , leaf )));

IBT = node(node(leaf , 20, leaf), 30, leaf );

IBT = node(node(leaf , 20, leaf), 30, node(leaf , 33, leaf ));

IBT = node(node(leaf , 20, leaf), 30, node(leaf , 33, node(leaf , 1000 , leaf )));

IBT = node(node(leaf , 20, leaf), 30, node(node(leaf , 99, leaf), 33, leaf ));

IBT = node(node(leaf , 20, leaf),
30,
node(node(leaf , 99, leaf), 33, node(leaf , 1000 , leaf )));

IBT = node(node(node(leaf , 9, leaf), 20, leaf), 30, leaf );

IBT = node(node(node(leaf , 9, leaf), 20, leaf), 30, node(leaf , 33, leaf ));

IBT = node(node(node(leaf , 9, leaf), 20, leaf),
30,
node(leaf , 33, node(leaf , 1000 , leaf )));

IBT = node(node(node(leaf , 9, leaf), 20, leaf),
30,
node(node(leaf , 99, leaf), 33, leaf ));

IBT = node(node(node(leaf , 9, leaf), 20, leaf),
30,
node(node(leaf , 99, leaf), 33, node(leaf , 1000 , leaf )));

IBT = leaf;

IBT = node(leaf , 20, leaf );

IBT = node(node(leaf , 9, leaf), 20, leaf );

IBT = leaf;

IBT = node(leaf , 9, leaf );

IBT = leaf;

7



IBT = leaf;

IBT = leaf;

IBT = leaf;

IBT = node(leaf , 33, leaf );

IBT = node(leaf , 33, node(leaf , 1000 , leaf ));

IBT = node(node(leaf , 99, leaf), 33, leaf );

IBT = node(node(leaf , 99, leaf), 33, node(leaf , 1000 , leaf ));

IBT = leaf;

IBT = node(leaf , 99, leaf );

IBT = leaf;

IBT = leaf;

IBT = leaf;

IBT = node(leaf , 1000 , leaf );

IBT = leaf;

IBT = leaf;

no
?- btreeInternal (node(node(node(leaf ,9, leaf ),20, leaf),

30,
node(node(leaf ,99, leaf ),33, node(leaf ,1000 , leaf ))),

node(leaf ,9, leaf )).
yes
?- btreeInternal (node(node(node(leaf ,9, leaf ),20, leaf),

30,
node(node(leaf ,99, leaf ),33, node(leaf ,1000 , leaf ))),

node(leaf ,30, node(leaf ,33, leaf ))).
yes
?- btreeInternal (node(node(node(leaf ,9, leaf ),20, leaf),

30,
node(node(leaf ,99, leaf ),33, node(leaf ,1000 , leaf ))),

node(leaf ,30, node(leaf ,99, leaf ))).
no

Note that the queries like btreeInternal(node(leaf,33,node(leaf,44,node(leaf,55,leaf))),IBT). are effec-
tively enumerations of the binary trees that are internal trees of the given binary tree. Note that in the interaction
above, the Prolog interpreter may give the same internal tree more than once, because internal trees may be dis-
tinguished by their path through the tree, and, thus, may be considered “different” internal trees (that happen to
be structurally equal).

Hint: btreeInternal requires one or more helper recursive predicates.

Hint: An internal tree is to a binary tree as a sublist is to a list. (A sublist SL of a list L is itself a (possibly empty)
list that is a contiguous set of elements from the list L.) Review the implementations of the sublist predicate.

8



K. (15pts) This problem investigates writing Prolog predicates that solves a logic puzzle.

Consider the following logic puzzle:

Alex, Bret, Chris, Derek, Eddie, Fred, Greg, Harold, and John are nine students who live in a three
storey building, with three rooms on each floor. A room in the West wing, one in the centre, and one in
the East wing. If you look directly at the building, the left side is West and the right side is East. Each
student is assigned exactly one room.

(a) Harold does not live on the bottom floor.
(b) Fred lives directly above John and directly next to Bret (who lives in the West wing).
(c) Eddie lives in the East wing and one floor higher than Fred.
(d) Derek lives directly above Fred.
(e) Greg lives directly above Chris.

Can you find where each of their rooms is?

http://www.brainbashers.com/showpuzzles.asp?puzzle=ZQJZ

To begin, we need to represent the students and the building as Prolog data structures. To do so, we use the
following Prolog terms:

• alex (a nullary functor): alex represents the student Alex.
• · · ·
• john (a nullary functor): john represents the student John.
• floor (a functor of arity 3): floor(SW,SC,SE) represents a floor that has student SW living in the West wing,

student SC living in the center, and student SE living in the East wing.
• west (a nullary functor): west represents the West wing room.
• center (a nullary functor): center represents the center room.
• east (a nullary functor): east represents the East wing room.
• building (a functor of arity 3): building(FB,FM,FT) represents a building that has floor FB as the bottom

floor, floor FM as the middle floor, and floor FT as the top floor.
• bottom (a nullary functor): bottom represents the bottom floor.
• middle (a nullary functor): middle represents the middle floor.
• top (a nullary functor): top represents the top floor.

We can then assert that a student lives in a room on a floor of the building with the following predicates:

• studentLivesInRoomOnFloor (a predicate of arity 3): studentLivesInRoomOnFloor(S,R,F) succeeds when
the student S lives in the room R on the floor F.

• studentLivesInRoomOnFloorOfBldg (a predicate of arity 4): studentLivesInRoomOnFloorOfBldg(S,R,F,B)
succeeds when the student S lives in the room R on the floor F of the building B.

• lives (a predicate of arity 4): lives is an alias for studentLivesInRoomOnFloorOfBldg.

Write a predicate puzzle_soln (of arity 1) such that puzzle_soln(BLDG) is satisfied when the building BLDG is a
solution to the logic puzzle.

Hint: Introduce auxiliary predicates to simplify the rule(s) for puzzle_soln.

Hint: To make the puzzle_soln predicate execute faster, interleave predicates that assert that a student lives in
a room on a floor of the building with predicates that assert the additional conditions.

Note that this puzzle has exactly one solution.

9



The following two problems investigate writing Prolog predicates that manipulate regular expressions.

To begin, we need to represent a regular expression as a Prolog data structure. To do so, we use the following Prolog
terms:

• epsilon (a nullary functor): epsilon represents the regular expression that matches the empty list.
• char (a functor of arity 1): char(A) represents the regular expression that matches the singleton list containing

the atom A.
• seq (a functor of arity 2): seq(RE1,RE2) represents the regular expression that matches any list that can split into

two lists (such that appending the two lists yields the original list) where the regular expression RE1 matches the
first list and the regular expression RE2 matches the second list.

• alt (a functor of arity 2): alt(RE1,RE2) represents the regular expression that matches any list where the regular
expression RE1 matches the list or the regular expression RE2 matches the list.

• star (a functor of arity 1): star(RE) represents the regular expression that matches the empty list and matches
any list that can be split into one or more lists (such that concatenating the lists yields the original list) where the
regular expression RE matches each list.

Since these terms represent data structures, you should not give predicates/clauses for them; rather, you will give rules
for predicates that use these terms in their parameters.

L. (15pts) Write a predicate re_match (of arity 2) such that re_match(RE,L) succeeds when the regular expression
RE matches the list of atoms L. The first argument may be assumed to always be instantiated with a ground term
when re_match is used in a query; the second argument will likely (but need not) be instantiated with a ground
term when re_match is used in a query.

Here are some sample interactions with the re_match predicate:
?- re_match (alt(char(a),star(char(b))) ,[]).
yes
?- re_match (alt(char(a),star(char(b))) ,[a]).
yes
?- re_match (alt(char(a),star(char(b))) ,[a,b]).
no
?- re_match (alt(char(a),star(char(b))) ,[a,b,b]).
no
?- re_match (alt(char(a),star(char(b))) ,[b]).
yes
?- re_match (alt(char(a),star(char(b))) ,[b,b]).
yes
?- re_match (alt(char(a),star(char(b))) ,[b,b|Z]).
Z = [];

Z = [b];

Z = [b, b];

Z = [b, b, b];

Z = [b, b, b, b];

Z = [b, b, b, b, b].
yes
?- re_match (seq(char(a),seq(star(char(b)), alt(char(c), epsilon ))) ,[]).
no
?- re_match (seq(char(a),seq(star(char(b)), alt(char(c), epsilon ))) ,[a]).
yes
?- re_match (seq(char(a),seq(star(char(b)), alt(char(c), epsilon ))) ,[b]).
no
?- re_match (seq(char(a),seq(star(char(b)), alt(char(c), epsilon ))) ,[a,b]).
yes
?- re_match (seq(char(a),seq(star(char(b)), alt(char(c), epsilon ))) ,[a,b,b]).
yes
?- re_match (seq(char(a),seq(star(char(b)), alt(char(c), epsilon ))) ,[a,b,b,c]).
yes
?- re_match (seq(char(a),seq(star(char(b)), alt(char(c), epsilon ))) ,[a,b,b,c,c]).

10



no
?- re_match (seq(char(a),seq(star(char(b)), alt(char(c), epsilon ))) ,[a,b|Z]).
Z = [c];

Z = [];

Z = [b, c];

Z = [b];

Z = [b, b, c];

Z = [b, b];

Z = [b, b, b, c];

Z = [b, b, b];

Z = [b, b, b, b, c].
yes

Note that the queries like re_match(alt(char(a),star(char(b))),Z) and
re_match(seq(char(a),seq(star(char(b)),alt(char(c),epsilon))),Z) are effectively enumerations of
the lists that are matched by the regular expression. However, the deterministic backtracking of Pro-
log means that the interpreter may attempt to enumerate an infinite set of lists before enumerating an
alternative; consider the query re_match(alt(star(char(a)),star(char(b))),Z), that produces the so-
lutions Z = [], Z = [a], Z = [a,a], Z = [a,a,a], . . . , without producing any solution of the form
Z = [b, b, ..., b, b]. To enumerate all lists up to a given length that match a predicate, use a query
of the form between(0,10,N), ofLength(N,Z), re_match(alt(star(char(a)),star(char(b))),Z)..

The direct implementation of re_match (using append for the seq case) can be a little slow. One can do better
with a predicate re_match_aux(RE,L,LS) that is satisfied when the regular expression RE matches a prefix of the
list L and LS is the suffix of the L that is not matched by the regular expression RE.

M. (bonus 5pts) Write a predicate re_reverse (of arity 2) such that re_reverse(RE,RRE) succeeds when the regular
expression RRE is the reversal of the regular expression RE. (That is, the regular expression RE matches a list of
atoms iff the regular expression RRE matches the reversal of the list of atoms.)

11



3 Requirements and Submission
In addition to the specifications given in the problems, your functions must not use any non-logical features of µProlog;
the use of print, ! (cut), or not in any problem will result in zero credit for that problem.

Helper predicates may be defined.

Your submission must be a valid µProlog program. In particular, it must pass the following test:

$ cat prog07 .P | /usr/local/pub/mtf/plc/bin/ uprolog -q > /dev/null

without any error messages. If your submission produces error messages (e.g., syntax errors), then your submission will
not be tested and will result in zero credit for the assignment.

Submit prog07.P to the Programming 07 Dropbox on MyCourses by the due date.

12



A Interpreter
A reference µProlog interpreter is available on the CS Department Linux systems (e.g., glados.cs.rit.edu and
queeg.cs.rit.edu and ICLs 1 and 2) at:

/usr/local/pub/mtf/plc/bin/uprolog

Use the reference interpreter to check your code.

A.1 Interactive mode
Simply executing

$ /usr/local/pub/mtf/plc/bin/ uprolog

will run the interpreter interactively, but without line editing.

Executing

$ rlwrap /usr/local/pub/mtf/plc/bin/ uprolog

or

$ ledit /usr/local/pub/mtf/plc/bin/ uprolog

will run the interpreter interactively with line editing. (See the manual pages for rlwrap and ledit for more de-
tails.)

A.2 Batch mode
Executing

$ cat prog07 .P | /usr/local/pub/mtf/plc/bin/ uprolog

will run the interpreter on the contents of the file prog07.P, but with prompts printed.

Executing

$ cat prog07 .P | /usr/local/pub/mtf/plc/bin/ uprolog -q

will run the interpreter on the contents of the file prog07.P without prompts printed.

Executing

$ cat prog07 .P prog07_tests .P | /usr/local/pub/mtf/plc/bin/ uprolog -q

will run the interpreter on the contents of the files prog07.P and prog07_tests.P without prompts printed.

13


	Introduction
	Description
	Requirements and Submission
	Interpreter
	Interactive mode
	Batch mode


