
Programming Language Concepts
CSCI-344
Term 20235

Programming 8

Interpreter Choice

1 Introduction
In this programming assignment, you will complete and/or extend one of the textbook interpreters in order to gain
experience with the implementation of a language or language feature.

This programming assignment must be completed as a pair programming assignment; see [WK00] for useful guidelines
on pair programming.

2 Description
Choose one of the following problems:

2.1 Type Inference for nano-ML
Complete Exercises 18 and 19 of Chapter 7 from Programming Languages: Build, Prove, and Compare (pp. 448 and
449). The exercises ask you to complete the implementation of type inference for the nano-ML interpreter written in
Standard ML.

Source code for this problem is named nml.

Notes:

• The source code includes an example (tsort.nml) and its output (tsort.soln.out). It is a functional topological
sort (written by Prof. Norman Ramsey), that makes a reasonably interesting test case. The tsort.soln.out
output was generated by the following command with the reference solution:

$ cat tsort.nml | ./ nml -q

• Like with Programming 05: Type Systems, you can also check that your type inference implementation assigns
correct types to the variables defined in the basis.

• Like with Programming 05: Type Systems, the real test of a type checker is not only that it accepts correct
programs but that it rejects incorrect programs.

2.2 Unification and Non-logical Features for µProlog
Complete Exercises 38, 44, and 45 of Appendix D from Programming Languages: Build, Prove, and Compare (Supple-
ment) (pp. S111 and S112). The exercises ask you to complete the implementation of constraint solving for and to add
implementations of the ! (cut) and not predicates to the µProlog interpreter written in Standard ML.

Source code for this problem is named uprolog.

Notes:

• When implementing !, you may find it helpful to review Section 2.10.2 from Programming Languages: Build, Prove,
and Compare, which discusses the use of continuation-passing style for backtracking search.

• The reference solution and tests from Programming 07: Prolog Programming should serve as a good test of the
implementations of substitution and unification. However, they do not use not or ! (cut).

1



2.3 Mark-Sweep Garbage Collector for µScheme
Complete Exercises 7, 8, and 9 of Chapter 4 from Programming Languages: Build, Prove, and Compare (pp. 294 – 296).
The exercise asks you to complete the implementation of a mark-sweep garbage collector for the µScheme interpreter
written in C.

Source code for this problem is named uscheme-ms.

Notes:

• You should only need to modify ms.c.

• You will find it helpful to read Appendix N from Programming Languages: Build, Prove, and Compare (Supplement),
which describes the supporting code for garbage collection in the µScheme interpreter written in C.

• The source code includes an example (eval.scm and evaltest.scm) and sample output
(eval_evaltest.soln.out). It is the metacircular evaluator described in Section E.1 as well as a couple
of short tests of the metacircular evaluator. It should trigger a fair number of garbage collections. The
eval_evaltest.soln.out output was generated by the following command with the reference solution:

$ cat eval.scm evaltest .scm | ./ uscheme -ms -qq

• The reference solution and tests from Programming 03: Scheme Programming should serve as a good test.

2.4 Copying Garbage Collector for µScheme
Complete Exercises 1 and 2 of Chapter 4 from Programming Languages: Build, Prove, and Compare (p. 293). The
exercises ask you to complete the implementation of a copying garbage collector for the µScheme interpreter written in
C.

Source code for this problem is named uscheme-copy.

Notes:

• You should only need to modify copy.c.

• You will find it helpful to read Appendix N from Programming Languages: Build, Prove, and Compare (Supplement),
which describes the supporting code for garbage collection in the µScheme interpreter written in C.

• The source code includes an example (eval.scm and evaltest.scm) and sample output
(eval_evaltest.soln.out). It is the metacircular evaluator described in Section E.1 as well as a couple
of short tests of the metacircular evaluator. It should trigger a fair number of garbage collections. The
eval_evaltest.soln.out output was generated by the following command with the reference solution:

$ cat eval.scm evaltest .scm | ./ uscheme -copy -qq

• The reference solution and tests from Programming 03: Scheme Programming should serve as a good test.

2



2.5 Method Caches and Class Variables for µSmalltalk
Complete Exercise 41 of Chapter 10 from Programming Languages: Build, Prove, and Compare (pp. 724 – 725). The
exercise asks you to add method caches to the µSmalltalk interpreter written in Standard ML.

In addition, add support for class variables to the µSmalltalk interpreter. Class variables are discussed briefly in Sec-
tion 10.12.2 (paragraph More variables: Class instance variables and class variables; p. 704). The concrete syntax for
class definitions becomes:

def ::= (class subclass-name
[subclass-of superclass-name]
[[cvars {instance-variable-name}]]
[[ivars {instance-variable-name}]]
{method-definition})

As described in the text, class variables are accessible to all the instances of a class and its subclasses, as well as the
class itself and its subclasses. (To avoid confusion, if x is declared as a class or instance variable of an ancestor, it may
not also be declared as a class or instance variable of class C.)

Source code for this problem is named usmalltalk.

Notes:

• For the first part (method cache), the reference solution and tests from Programming 06: Smalltalk Programming
may make a good test.

• For the second part (class variables), the source code includes an example (cvars.smt) and sample output
(cvars.soln.out). The cvars.soln.out output was generated by the following command with the reference
solution:

$ cat cvars | ./ usmalltalk -qq

• When changing the syntax of the language, you will find it helpful to read Appendix I from Programming Languages:
Build, Prove, and Compare (Supplement), which describes scanning and parsing (i.e., the conversion from concrete
syntax to abstract syntax).

2.6 Quasiquotation, list/set-car!/set-cdr!, and Rest Arguments for µScheme
Complete Exercises 55, 56, 58, and 59 of Chapter 2 from Programming Languages: Build, Prove, and Compare (pp. 197
and 198). The exercises ask you to add support for quasiquotation to the µScheme interpreter and to add list, apply,
set-car!, and set-cdr! to the initial basis; although Chapter 2 describes the µScheme interpreter written in C, for this
problem, modify the µScheme interpreter written in Standard ML.

In addition, add support for rest arguments to the µScheme interpreter and upgrade appropriate functions (either
primitive or pre-defined; e.g., +, <, and, max) from the initial basis to accept an arbitrary number of arguments (even
zero). Rest arguments are briefly described in the antepenultimate (third to the last) paragraph of Section 2.14.1 (p. 169);
they are the mechanism by which Scheme functions can take a variable number of arguments.

Source code for this problem is named uscheme.

Notes:

• When changing the syntax of the language, you will find it helpful to read Appendix I from Programming Languages:
Build, Prove, and Compare (Supplement), which describes scanning and parsing (i.e., the conversion from concrete
syntax to abstract syntax).

• Adding list as a primitive is a simple exercise in modifying the interpreter, but after implementing rest arguments,
it has a trivial solution as a pre-defined function.

• Since this is a change to the existing language, there aren’t readily available tests. However, the changes are
backwards compatible, so you can test that your updated interpreter continues to work with existing uScheme
programs (such as the reference solution and tests from Programming 03: Scheme Programming).

3



3 Interpreter Source Code
Source code for the various problems is available on the CS Department file system at:

/usr/local/pub/mtf/plc/programming/prog08-interp-choice/problem-name

and packaged as an archive at:

/usr/local/pub/mtf/plc/programming/prog08-interp-choice/problem-name.tar

Note that the source code contains just the C code or Standard ML from the textbook, with simple comments identifying
page numbers. There is a Makefile for building the interpreter.

Copy the interpreter source code to a local directory and make modifications to your local copy; for example, execut-
ing

$ tar xvf /usr/local/pub/mtf/plc/ programming /prog08 -interp - choice /nml.tar

will copy the interpreter source code to a new local directory named nml.

4 Requirements and Submission
Modify the chosen interpreter as necessary.

Your modified interpreter must be a valid C or Standard ML program. In particular, it must compile with gcc or with
Moscow ML or MLton without any error messages. If your submission produces error messages (e.g., syntax errors or
type errors), then your submission will not be tested and will result in zero credit for the assignment.

Write a README.txt file. Your README.txt file should be formatted as follows:

Name(s):
Project Choice :
Time spent on assignment :
Additional Collaborators :

... description of your solution to the problem ...

... description of how you tested your submission ...

... (why are you convinced that it works correctly ) ...

... description of your submission 's functionality ...

... (what is working , what is not working ) ...

In essence, the README.txt file should include a narrative description of the work done to complete this programming
assignment. It will carry substantial weight when awarding partial credit.

Submit all modified files and README.txt to the Programming 08 Dropbox on MyCourses by the due date. Only one
submission is required per group.

References
[WK00] Laurie A. Williams and Robert R. Kessler. All I Really Need to Know About Pair Programming I Learned in

Kindergarten. Communications of the ACM, 43(5):108–114, May 2000.

4


	Introduction
	Description
	Type Inference for nano-ML
	Unification and Non-logical Features for Prolog
	Mark-Sweep Garbage Collector for Scheme
	Copying Garbage Collector for Scheme
	Method Caches and Class Variables for Smalltalk
	Quasiquotation, list/set-car!/set-cdr!, and Rest Arguments for Scheme

	Interpreter Source Code
	Requirements and Submission

